Vai al contenuto principale della pagina

Uncertainty Quantification Techniques in Statistics



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kim Jong-Min Visualizza persona
Titolo: Uncertainty Quantification Techniques in Statistics Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 online resource (128 p.)
Soggetto non controllato: ?1 lasso
?2 ridge
accuracy
adapative lasso
adaptive lasso
allele read counts
AUROC
BH-FDR
data envelopment analysis
elastic net
ensembles
entropy
feature selection
gene expression data
gene-expression data
geometric distribution
geometric mean
Gompertz distribution
group efficiency comparison
high-throughput
Kullback-Leibler divergence
Laplacian matrix
lasso
LASSO
low-coverage
MCP
mixture model
next-generation sequencing
probability proportional to size (PPS) sampling
randomization device
resampling
sandwich variance estimator
SCAD
sea surface temperature
semiparametric regression
sensitive attribute
SIS
Skew-Reflected-Gompertz distribution
stochastic frontier model
Yennum et al.'s model
Sommario/riassunto: Uncertainty quantification (UQ) is a mainstream research topic in applied mathematics and statistics. To identify UQ problems, diverse modern techniques for large and complex data analyses have been developed in applied mathematics, computer science, and statistics. This Special Issue of Mathematics (ISSN 2227-7390) includes diverse modern data analysis methods such as skew-reflected-Gompertz information quantifiers with application to sea surface temperature records, the performance of variable selection and classification via a rank-based classifier, two-stage classification with SIS using a new filter ranking method in high throughput data, an estimation of sensitive attribute applying geometric distribution under probability proportional to size sampling, combination of ensembles of regularized regression models with resampling-based lasso feature selection in high dimensional data, robust linear trend test for low-coverage next-generation sequence data controlling for covariates, and comparing groups of decision-making units in efficiency based on semiparametric regression.
Titolo autorizzato: Uncertainty Quantification Techniques in Statistics  Visualizza cluster
ISBN: 3-03928-547-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910404091103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui