Vai al contenuto principale della pagina

Time Series Modelling



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Weiss Christian H Visualizza persona
Titolo: Time Series Modelling Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 online resource (372 p.)
Soggetto topico: Humanities
Soggetto non controllato: anomaly detection
bank failures
Bell distribution
bivariate Poisson INGARCH model
cointegration
count data
count time series
counting series
CUSUM control chart
dispersion test
electric power
entropy based particle filter
estimation
ETS
extended binomial distribution
finance
forecasting accuracy
Holt-Winters
INAR
INAR-type time series
INGACRCH
integer-valued moving average model
integer-valued threshold models
integer-valued time series
Julia programming language
kernel density estimation
limit theorems
local field potential
long-range dependence
machine learning
minimum density power divergence estimator
missing data
models
multivariate count data
multivariate data analysis
multivariate time series
neural network autoregression
nonstationary
ordinal patterns
outliers
overdispersion
parameter estimation
periodic autoregression
random survival rate
relative entropy
robust estimation
Romania
SARIMA
seasonality
SETAR
spectral matrix
state-space model
statistical process monitoring
Student's t-process
subspace algorithms
thinning operator
time series
time series analysis
time series of counts
transactions
unemployment rate
unsupervised learning
VARMA models
volatility fluctuation
zero-inflation
Persona (resp. second.): WeissChristian H
Sommario/riassunto: The analysis and modeling of time series is of the utmost importance in various fields of application. This Special Issue is a collection of articles on a wide range of topics, covering stochastic models for time series as well as methods for their analysis, univariate and multivariate time series, real-valued and discrete-valued time series, applications of time series methods to forecasting and statistical process control, and software implementations of methods and models for time series. The proposed approaches and concepts are thoroughly discussed and illustrated with several real-world data examples.
Titolo autorizzato: Time Series Modelling  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557541003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui