A Combinatorial Perspective on Quantum Field Theory / Karen Yeats |
Autore | Yeats, Karen |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | ix, 120 p. : ill. ; 24 cm |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
05C05 - Trees [MSC 2020] 00A79 (77-XX) - Physics [MSC 2020] 81T05 - Axiomatic quantum field theory; operator algebras [MSC 2020] 81P05 - General and philosophical questions in quantum theory [MSC 2020] 83C47 - Methods of quantum field theory in general relativity and gravitational theory [MSC 2020] 16T05 - Hopf algebras and their applications [MSC 2020] 16T30 - Connections of Hopf algebras with combinatorics [MSC 2020] 81T18 - Feynman diagrams [MSC 2020] 97K20 - Combinatorics (educational aspects) [MSC 2020] |
Soggetto non controllato |
C2 invariant
Chord diagram expansion Combinatorial Hopf algebras Combinatorial classes Connes-Kreimer Hopf algebra Dyson-Schwinger equations Feynman graphs Feynman periods Graph theory Leading log expansion Rooted trees Schnetz twist Sub Hopf algebras The zigzag result |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0181265 |
Yeats, Karen
![]() |
||
Cham, : Springer, 2017 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
A Combinatorial Perspective on Quantum Field Theory / Karen Yeats |
Autore | Yeats, Karen |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | ix, 120 p. : ill. ; 24 cm |
Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
05C05 - Trees [MSC 2020] 16T05 - Hopf algebras and their applications [MSC 2020] 16T30 - Connections of Hopf algebras with combinatorics [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81P05 - General and philosophical questions in quantum theory [MSC 2020] 81T05 - Axiomatic quantum field theory; operator algebras [MSC 2020] 81T18 - Feynman diagrams [MSC 2020] 83C47 - Methods of quantum field theory in general relativity and gravitational theory [MSC 2020] 97K20 - Combinatorics (educational aspects) [MSC 2020] |
Soggetto non controllato |
C2 invariant
Chord diagram expansion Combinatorial Hopf algebras Combinatorial classes Connes-Kreimer Hopf algebra Dyson-Schwinger equations Feynman graphs Feynman periods Graph theory Leading log expansion Rooted trees Schnetz twist Sub Hopf algebras The zigzag result |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00181265 |
Yeats, Karen
![]() |
||
Cham, : Springer, 2017 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Periods in Quantum Field Theory and Arithmetic : ICMAT, Madrid, Spain, September 15 – December 19, 2014 / José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl editors |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 630 p. : ill. ; 24 cm |
Soggetto topico |
11G09 - Drinfel'd modules; higher-dimensional motives, etc. [MSC 2020]
20E08 - Groups acting on trees [MSC 2020] 17B81 - Applications of Lie (super)algebras to physics, etc. [MSC 2020] 11M32 - Multiple Dirichlet series and zeta functions and multizeta values [MSC 2020] |
Soggetto non controllato |
Combinatorics
Ecalle's mould calculus Elliptic dilogarithm Feynman amplitudes Lie Algebras Motivic Galois group Multiple zeta values Periods Polylogarithms Renormalization Rooted trees Shuffle algebras String amplitudes q-multiple zeta values |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249643 |
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Periods in Quantum Field Theory and Arithmetic : ICMAT, Madrid, Spain, September 15 – December 19, 2014 / José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl editors |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 630 p. : ill. ; 24 cm |
Soggetto topico |
11G09 - Drinfel'd modules; higher-dimensional motives, etc. [MSC 2020]
11M32 - Multiple Dirichlet series and zeta functions and multizeta values [MSC 2020] 17B81 - Applications of Lie (super)algebras to physics, etc. [MSC 2020] 20E08 - Groups acting on trees [MSC 2020] |
Soggetto non controllato |
Combinatorics
Ecalle's mould calculus Elliptic dilogarithm Feynman amplitudes Lie Algebras Motivic Galois group Multiple zeta values Periods Polylogarithms Renormalization Rooted trees Shuffle algebras String amplitudes q-multiple zeta values |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249643 |
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|