top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Contemporary Experimental Design, Multivariate Analysis and Data Mining : Festschrift in Honour of Professor Kai-Tai Fang / Jianqing Fan, Jianxin Pan editors
Contemporary Experimental Design, Multivariate Analysis and Data Mining : Festschrift in Honour of Professor Kai-Tai Fang / Jianqing Fan, Jianxin Pan editors
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xvii, 386 p. : ill. ; 24 cm
Soggetto topico 62H12 - Estimation in multivariate analysis [MSC 2020]
00B30 - Festschriften [MSC 2020]
62-XX - Statistics [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Big Data
Composite design
Covariance matrix
Data Mining
Experimental design
Functional data
High-Dimensional Data
Longitudinal data
Machine learning
Multivariate Data
Network data
Quantile regression
Robust Design
Survival data
Variable Selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0248857
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Contemporary Experimental Design, Multivariate Analysis and Data Mining : Festschrift in Honour of Professor Kai-Tai Fang / Jianqing Fan, Jianxin Pan editors
Contemporary Experimental Design, Multivariate Analysis and Data Mining : Festschrift in Honour of Professor Kai-Tai Fang / Jianqing Fan, Jianxin Pan editors
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xvii, 386 p. : ill. ; 24 cm
Soggetto topico 00B30 - Festschriften [MSC 2020]
62-XX - Statistics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Big Data
Composite design
Covariance matrix
Data Mining
Experimental design
Functional data
High-Dimensional Data
Longitudinal data
Machine learning
Multivariate Data
Network data
Quantile regression
Robust Design
Survival data
Variable Selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00248857
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Mastering Uncertainty in Mechanical Engineering
Mastering Uncertainty in Mechanical Engineering
Autore Pelz Peter F
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (483 p.)
Altri autori (Persone) GrochePeter
PfetschMarc E
SchaeffnerMaximilian
Collana Springer Tracts in Mechanical Engineering
Soggetto topico Technical design
Operational research
Soggetto non controllato Stochastic Data Uncertainty
Model Uncertainty
Structural Uncertainty
Robust Optimization Under Uncertainty
Adaptive Technical Systems
Optimal Design of Technical Systems
Resilient Technical Systems
Robust Design
Product Design Under Uncertainty
Visualization of Uncertainty
Sonderforschungsbereich (SFB) 805
Fluid Dynamic Vibration Absorber
3D Servo Press
Active Air Spring
Active/Semi-Active Systems
Increasing Flexibility in Manufacturing
Open Access Book
ISBN 3-030-78354-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Motivation -- 1.2 Holistic Control of Uncertainty over the Phases of the Product Life Cycle -- 1.3 Components are Represented in Models -- 1.4 Data and Data Sources -- 1.5 Component Structures -- 1.6 Sustainable Systems Design-The Extended Motivation for This Book -- 1.7 Outlook on the Following Book Structure -- References -- 2 Types of Uncertainty -- 2.1 Data Uncertainty -- 2.1.1 Introduction -- 2.1.2 Stochastic Data Uncertainty -- 2.1.3 Incertitude -- 2.2 Model Uncertainty
2.2.1 Functional Relations, Scope and Complexity of Mathematical Models -- 2.2.2 Approaches to Detect, Quantify, and Master Model Uncertainty -- 2.3 Structural Uncertainty -- References -- 3 Our Specific Approach on Mastering Uncertainty -- 3.1 Beyond Existing Approaches -- 3.2 Uncertainty Propagation Through Process Chains -- 3.3 Five Complementary Methods for Mastering Uncertainty in Process Chains -- 3.4 Time-Variant, Dynamic and Active Processes -- 3.5 Strategies for Mastering Uncertainty-Robustness, Flexibility, Resilience -- 3.6 Exemplary Technical System Mastering Uncertainty
3.6.1 Modular Active Spring-Damper System -- 3.6.2 Active Air Spring -- 3.6.3 3D Servo Press -- References -- 4 Analysis, Quantification and Evaluation of Uncertainty -- 4.1 Identification of Uncertainty During Modelling of Technical Processes -- 4.1.1 Analysis of Data Uncertainty Using the Example of Passive and Active Vibration Isolation -- 4.1.2 Bayesian Inference Based Parameter Calibration for a Mathematical Model of a Load-Bearing Structure -- 4.1.3 Model-Based Analysis of Uncertainty in Chained Machining Processes -- 4.2 Data-Induced Conflicts
4.2.1 Dealing with Data-Induced Conflicts in Technical Systems -- 4.2.2 Data-Induced Conflicts for Wear Detection in Hydraulic Systems -- 4.2.3 Fault Detection in a Structural System -- 4.3 Analysis, Quantification and Evaluation of Model Uncertainty -- 4.3.1 Detection of Model Uncertainty via Parameter Estimation and Optimum Experimental Design -- 4.3.2 Detection of Model Uncertainty in Mathematical Models of the 3D Servo Press -- 4.3.3 Assessment of Model Uncertainty for the Modular Active Spring-Damper System -- 4.3.4 Model Uncertainty in Hardware-in-the-loop Tests
4.3.5 Identification of Model Uncertainty in the Development of Adsorption Based Hydraulic Accumulators -- 4.3.6 Uncertainty Scaling-Propagation from a Real Model to a Full-Scale System -- 4.3.7 Improvement of Surrogate Models Using Observed Data -- 4.3.8 Uncertainty Quantification with Estimated Distribution of Input Parameters -- 4.4 Representation and Visualisation of Uncertainty -- 4.4.1 Ontology-Based Information Model -- 4.4.2 Visualisation of Geometric Uncertainty in CAD Systems -- 4.4.3 Digital Twin of Load Carrying Structures for the Mastering of Uncertainty -- References
5 Methods and Technologies for Mastering Uncertainty
Record Nr. UNINA-9910503009503321
Pelz Peter F  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertainty quantification : an accelerated course with advanced applications in computational engineering / Christian Soize
Uncertainty quantification : an accelerated course with advanced applications in computational engineering / Christian Soize
Autore Soize, Christian
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xxii, 329 p. : ill. ; 24 cm
Soggetto topico 47-XX - Operator theory [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
62-XX - Statistics [MSC 2020]
Soggetto non controllato High Stochastic Dimension
MCMC Methods
Maximum Entropy Principle
Model Uncertainties
Model-parameter Uncertainties
Non-Gaussian Random Fields
Nonparametric Uncertainties
Polynomial Chaos Expansion
Random matrices
Robust Design
Statistical inverse problems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0123409
Soize, Christian  
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Uncertainty quantification : an accelerated course with advanced applications in computational engineering / Christian Soize
Uncertainty quantification : an accelerated course with advanced applications in computational engineering / Christian Soize
Autore Soize, Christian
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xxii, 329 p. : ill. ; 24 cm
Soggetto topico 15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020]
47-XX - Operator theory [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
62-XX - Statistics [MSC 2020]
Soggetto non controllato High Stochastic Dimension
MCMC Methods
Maximum Entropy Principle
Model Uncertainties
Model-parameter Uncertainties
Non-Gaussian Random Fields
Nonparametric Uncertainties
Polynomial Chaos Expansion
Random matrices
Robust Design
Statistical inverse problems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00123409
Soize, Christian  
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui