Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak |
Autore | Blaszak, Maciej |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xiii, 460 p. : ill. ; 24 cm |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020] 70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020] 53D50 - Geometric quantization [MSC 2020] 37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 81S08 - Canonical quantization [MSC 2020] 81Q80 - Special quantum systems, such as solvable systems [MSC 2020] |
Soggetto non controllato |
Bosonic systems
Classical integrable systems Deformation quantization Geometric deformation Hamilton-Jacobi Theory Integrable Systems Lie derivative Linear tensor algebra Liouville integrable systems Quantum Trajectory Quantum integrability Quantum integrable systems Riemannian spaces Separability theory Staeckel systems Symplectic manifolds Tensor fields |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0218332 |
Blaszak, Maciej | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak |
Autore | Blaszak, Maciej |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xiii, 460 p. : ill. ; 24 cm |
Soggetto topico |
37-XX - Dynamical systems and ergodic theory [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 53D50 - Geometric quantization [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020] 70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81Q80 - Special quantum systems, such as solvable systems [MSC 2020] 81S08 - Canonical quantization [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] |
Soggetto non controllato |
Bosonic systems
Classical integrable systems Deformation quantization Geometric deformation Hamilton-Jacobi Theory Integrable Systems Lie derivative Linear tensor algebra Liouville integrable systems Quantum Trajectory Quantum integrability Quantum integrable systems Riemannian spaces Separability theory Staeckel systems Symplectic manifolds Tensor fields |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00218332 |
Blaszak, Maciej | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich |
Autore | Zhelnorovich, Vladimir A. |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xvi, 392 p. : ill. ; 24 cm |
Soggetto topico |
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020] 83C60 - Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 15Axx - Basic linear algebra [MSC 2020] 81T11 - Higher spin theories [MSC 2020] |
Soggetto non controllato |
Complex Euclidean spaces
Dirac matrices Einstein-Dirac equations Fermi-Walker transport Gamma Matrices Lorentz group Maxwell's equations Minkowski space Nonlinear Heisenberg equations Pseudo-Eucliedean spaces Riemannian spaces Semi spinors Spin fluids Spinor fields Tensor fields Tensor representation of spinors Tetrad formalism |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0219211 |
Zhelnorovich, Vladimir A. | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich |
Autore | Zhelnorovich, Vladimir A. |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xvi, 392 p. : ill. ; 24 cm |
Soggetto topico |
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
15Axx - Basic linear algebra [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020] 81T11 - Higher spin theories [MSC 2020] 83C60 - Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism [MSC 2020] |
Soggetto non controllato |
Complex Euclidean spaces
Dirac matrices Einstein-Dirac equations Fermi-Walker transport Gamma Matrices Lorentz group Maxwell's equations Minkowski space Nonlinear Heisenberg equations Pseudo-Eucliedean spaces Riemannian spaces Semi spinors Spin fluids Spinor fields Tensor fields Tensor representation of spinors Tetrad formalism |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00219211 |
Zhelnorovich, Vladimir A. | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|