top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The Economics of Big Science [[electronic resource] ] : Essays by Leading Scientists and Policymakers / / edited by Hans Peter Beck, Panagiotis Charitos
The Economics of Big Science [[electronic resource] ] : Essays by Leading Scientists and Policymakers / / edited by Hans Peter Beck, Panagiotis Charitos
Autore Beck Hans Peter
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (VIII, 137 p. 26 illus., 24 illus. in color.)
Disciplina 539.7
Collana Science Policy Reports
Soggetto topico Nuclear physics
Economic policy
Space sciences
Big data
Capital investments
Particle and Nuclear Physics
R & D/Technology Policy
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
Big Data
Investment Appraisal
Soggetto genere / forma Conference papers and proceedings.
Soggetto non controllato Particle and Nuclear Physics
R & D/Technology Policy
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
Big Data
Investment Appraisal
Nuclear and Particle Physics
Economics
Space Physics
Finance
Investing in fundamental science
Societal benefits / value of science
Measuring socio-economic impact of science
Benefits from fundamental research
Big science projects finance/costs
Cost of large-scale scientific projects
Societal value of fundamental science
Open Access
Particle & high-energy physics
Research & development management
Astronautics
Databases
Investment & securities
ISBN 3-030-52391-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Towards a Sustainable European Research Infrastructures Ecosystem -- Economics of Science in the Time of Data Economy and Gigabit Society -- The SKA Approach to Sustainable Research -- The European Spallation Source: Designing a Sustainable Research Infrastructure for Europe -- Optimising the Benefits from Research Institutes -- Rethinking the Socio-economic Value of Big Science: Lessons from the FCC Study -- Socio-Economic Impact Assessments of ESA Programmes: A Brief Overview -- Designing a Socio-Economic Impact Framework for Research Infrastructures: Preliminary Lessons from the RI-PATHS Project -- Findings from the LHC/HL-LHC Programme -- Designing a Research Infrastructure with Impact in Mind -- Leveraging the Economic Potential of FCC’s Technologies and Processes -- How to Value Public Science Employing Social Big Data? -- R&D, Innovative Collaborations and the Role of Public Policies -- Large-Scale Investment in Science: Economic Impact and Social Justice -- Investing in Fundamental Research: For Whom? A Philosopher’s Perspective -- Investing in Fundamental Research: Evaluation of the Benefits that the UK Has Derived from CERN -- Fundamental Science Drives Innovation -- Epilogue: Productive Collisions—Blue-Sky Science and Today’s Innovations.
Record Nr. UNISA-996466747603316
Beck Hans Peter  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The Elements of Big Data Value [[electronic resource] ] : Foundations of the Research and Innovation Ecosystem
The Elements of Big Data Value [[electronic resource] ] : Foundations of the Research and Innovation Ecosystem
Autore Curry Edward
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (412 p.)
Altri autori (Persone) MetzgerAndreas
ZillnerSonja
PazzagliaJean-Christophe
García RoblesAna
Soggetto topico Information retrieval
Business & management
Research & development management
Information technology industries
Databases
Soggetto non controllato Information Storage and Retrieval
Business and Management, general
Innovation/Technology Management
The Computer Industry
Big Data
Innovation and Technology Management
Technology Commercialization
Digital Transformation
Innovation Spaces
Data-Driven Innovation
Data Analytics
Technology Management
Data Ecosystems
Data Protection
Big Data Business Models
Open Access
Information retrieval
Data warehousing
Business & Management
Research & development management
Industrial applications of scientific research & technological innovation
Information technology industries
Databases
ISBN 3-030-68176-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464495403316
Curry Edward  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The Elements of Big Data Value : Foundations of the Research and Innovation Ecosystem
The Elements of Big Data Value : Foundations of the Research and Innovation Ecosystem
Autore Curry Edward
Edizione [1st ed.]
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (412 p.)
Altri autori (Persone) MetzgerAndreas
ZillnerSonja
PazzagliaJean-Christophe
García RoblesAna
Collana Computer Science Series
Soggetto topico Information retrieval
Business & management
Research & development management
Information technology industries
Databases
Soggetto non controllato Information Storage and Retrieval
Business and Management, general
Innovation/Technology Management
The Computer Industry
Big Data
Innovation and Technology Management
Technology Commercialization
Digital Transformation
Innovation Spaces
Data-Driven Innovation
Data Analytics
Technology Management
Data Ecosystems
Data Protection
Big Data Business Models
Open Access
Information retrieval
Data warehousing
Business & Management
Research & development management
Industrial applications of scientific research & technological innovation
Information technology industries
Databases
ISBN 3-030-68176-9
Classificazione BUS042000BUS070030BUS087000COM021000COM030000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Foreword -- Foreword -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- Part I: Ecosystem Elements of Big Data Value -- The European Big Data Value Ecosystem -- 1 Introduction -- 2 What Is Big Data Value? -- 3 Strategic Importance of Big Data Value -- 4 Developing a European Big Data Value Ecosystem -- 4.1 Challenges -- 4.2 A Call for Action -- 4.3 The Big Data Value PPP (BDV PPP) -- 4.4 Big Data Value Association -- 5 The Elements of Big Data Value -- 5.1 Ecosystem Elements of Big Data Value -- 5.2 Research and Innovation Elements of Big Data Value -- 5.3 Business, Policy and Societal Elements of Big Data Value -- 5.4 Emerging Elements of Big Data Value -- 6 Summary -- References -- Stakeholder Analysis of Data Ecosystems -- 1 Introduction -- 2 Stakeholder Analysis -- 3 Who Is a Stakeholder? -- 4 Methodology -- 4.1 Phase 1: Case Studies -- 4.2 Phase 2: Cross-Case Analysis -- 5 Sectoral Case Studies -- 6 Cross-Case Analysis -- 6.1 Technology Adoption Stage -- 6.2 Data Value Chain -- 6.3 Strategic Impact of IT -- 6.4 Stakeholder Characteristics -- 6.5 Stakeholder Influence -- 7 Summary -- References -- A Roadmap to Drive Adoption of Data Ecosystems -- 1 Introduction -- 2 Challenges for the Adoption of Big Data Value -- 3 Big Data Value Public-Private Partnership -- 3.1 The Big Data Value Ecosystem -- 4 Five Mechanism to Drive Adoption -- 4.1 European Innovation Spaces (i-Spaces) -- 4.2 Lighthouse Projects -- 4.3 Technical Projects -- 4.4 Platforms for Data Sharing -- 4.4.1 Industrial Data Platforms (IDP) -- 4.4.2 Personal Data Platforms (PDP) -- 4.5 Cooperation and Coordination Projects -- 5 Roadmap for Adoption of Big Data Value -- 6 European Data Value Ecosystem Development -- 7 Summary -- References -- Achievements and Impact of the Big Data Value Public-Private Partnership: The Story so Far.
1 Introduction -- 2 The Big Data Value PPP -- 2.1 BDV PPP Vision and Objectives for European Big Data Value -- 2.2 Big Data Value Association (BDVA) -- 2.3 BDV PPP Objectives -- 2.4 BDV PPP Governance -- 2.5 BDV PPP Monitoring Framework -- 3 Main Activities and Achievements During 2018 -- 3.1 Mobilisation of Stakeholders, Outreach, Success Stories -- 4 Monitored Achievements and Impact of the PPP -- 4.1 Achievement of the Goals of the PPP -- 4.2 Progress Achieved on KPIs -- 4.2.1 Private Investments -- 4.2.2 Job Creation, New Skills and Job Profiles -- 4.2.3 Impact of the BDV PPP on SMEs -- 4.2.4 Innovations Emerging from Projects -- 4.2.5 Supporting Major Sectors and Major Domains with Big Data Technologies and Applications -- 4.2.6 Experimentation -- 4.2.7 SRIA Implementation and Update -- 4.2.8 Technical Projects -- 4.2.9 Macro-economic KPIs -- 4.2.10 Contributions to Environmental Challenges -- 4.2.11 Standardisation Activities with European Standardisation Bodies -- 5 Summary and Outlook -- References -- Part II: Research and Innovation Elements of Big Data Value -- Technical Research Priorities for Big Data -- 1 Introduction -- 2 Methodology -- 2.1 Technology State of the Art and Sector Analysis -- 2.2 Subject Matter Expert Interviews -- 2.3 Stakeholder Workshops -- 2.4 Requirement Consolidation -- 2.5 Community Survey -- 3 Research Priorities for Big Data Value -- 3.1 Priority `Data Management´ -- 3.1.1 Challenges -- 3.1.2 Outcomes -- 3.2 Priority `Data Processing Architectures´ -- 3.2.1 Challenges -- 3.2.2 Outcomes -- 3.3 Priority `Data Analytics´ -- 3.3.1 Challenges -- 3.3.2 Outcomes -- 3.4 Priority `Data Visualisation and User Interaction´ -- 3.4.1 Challenges -- 3.4.2 Outcomes -- 3.5 Priority `Data Protection´ -- 3.5.1 Challenges -- 3.5.2 Outcomes -- 4 Big Data Standardisation -- 5 Engineering and DevOps for Big Data -- 5.1 Challenges.
5.2 Outcomes -- 6 Illustrative Scenario in Healthcare -- 7 Summary -- References -- A Reference Model for Big Data Technologies -- 1 Introduction -- 2 Reference Model -- 2.1 Horizontal Concerns -- 2.1.1 Data Visualisation and User Interaction -- 2.1.2 Data Analytics -- 2.1.3 Data Processing Architectures -- 2.1.4 Data Protection -- 2.1.5 Data Management -- 2.1.6 Cloud and High-Performance Computing (HPC) -- 2.1.7 IoT, CPS, Edge and Fog Computing -- 2.2 Vertical Concerns -- 2.2.1 Big Data Types and Semantics -- 2.2.2 Standards -- 2.2.3 Communication and Connectivity -- 2.2.4 Cybersecurity -- 2.2.5 Engineering and DevOps for Building Big Data Value Systems -- 2.2.6 Marketplaces, Industrial Data Platforms and Personal Data Platforms (IDPs/PDPs), Ecosystems for Data Sharing and Innovat... -- 3 Transforming Transport Case Study -- 3.1 Data Analytics -- 3.2 Data Visualisation -- 3.3 Data Management -- 3.4 Assessing the Impact of Big Data Technologies -- 3.5 Use Case Conclusion -- 4 Summary -- References -- Data Protection in the Era of Artificial Intelligence: Trends, Existing Solutions and Recommendations for Privacy-Preserving T... -- 1 Introduction -- 1.1 Aim of the Chapter -- 1.2 Context -- 2 Challenges to Security and Privacy in Big Data -- 3 Current Trends and Solutions in Privacy-Preserving Technologies -- 3.1 Trend 1: User-Centred Data Protection -- 3.2 Trend 2: Automated Compliance and Tools for Transparency -- 3.3 Trend 3: Learning with Big Data in a Privacy-Friendly and Confidential Way -- 3.4 Future Direction for Policy and Technology Development: Implementing the Old and Developing the New -- 4 Recommendations for Privacy-Preserving Technologies -- References -- A Best Practice Framework for Centres of Excellence in Big Data and Artificial Intelligence -- 1 Introduction -- 2 Innovation Ecosystems and Centres of Excellence.
2.1 What Are Centres of Excellence? -- 3 Methodology -- 4 Best Practice Framework for Big Data and Artificial Intelligence Centre of Excellence -- 4.1 Environment -- 4.1.1 Industry -- 4.1.2 Policy -- 4.1.3 Societal -- 4.2 Strategic Capabilities -- 4.2.1 Strategy -- 4.2.2 Governance -- 4.2.3 Structure -- 4.2.4 Funding -- 4.2.5 People -- 4.2.6 Culture -- 4.3 Operational Capabilities -- 4.4 Impact -- 4.4.1 Economic Impact -- 4.4.2 Scientific Impact -- 4.4.3 Societal Impact -- 4.4.4 Impact Measured Through KPIs -- 5 How to Use the Framework -- 5.1 Framework in Action -- 6 Critical Success Factors for Centres of Excellence -- 6.1 Challenges -- 6.2 Success Factors -- 6.3 Mechanisms to Address Challenges -- 6.4 Ideal Situation -- 7 Summary -- References -- Data Innovation Spaces -- 1 Introduction -- 2 Introduction to the European Data Innovation Spaces -- 3 Key Elements of an i-Space -- 4 Role of an i-Space and its Alignment with Other Initiatives -- 5 BDVA i-Spaces Certification Process -- 6 Impact of i-Spaces in Their Local Innovation Ecosystems -- 7 Cross-Border Collaboration: Towards a European Federation of i-Spaces -- 8 Success Stories -- 8.1 CeADAR: Ireland´s Centre for Applied Artificial Intelligence -- 8.2 CINECA -- 8.3 EGI -- 8.4 EURECAT/Big Data CoE Barcelona -- 8.5 ITAINNOVA/Aragon DIH -- 8.6 ITI/Data Cycle Hub -- 8.7 Know-Center -- 8.8 NCSR Demokritos/Attica Hub for the Economy of Data and Devices (ahedd) -- 8.9 RISE/ICE by RISE -- 8.10 Smart Data Innovation Lab (SDIL) -- 8.11 TeraLab -- 8.12 Universidad Politécnica de Madrid/Madrid´s i-Space for Sustainability/AIR4S DIH -- 9 Summary -- Reference -- Part III: Business, Policy, and Societal Elements of Big Data Value -- Big Data Value Creation by Example -- 1 Introduction -- 2 How Can Big Data Transform Everyday Mobility and Logistics?.
3 Digitalizing Forestry by Harnessing the Power of Big Data -- 4 GATE: First Big Data Centre of Excellence in Bulgaria -- 5 Beyond Privacy: Ethical and Societal Implications of Data Science -- 6 A Three-Year Journey to Insights and Investment -- 7 Scaling Up Data-Centric Start-Ups -- 8 Campaign Booster -- 9 AI Technology Meets Animal Welfare to Sustainably Feed the World -- 10 Creating the Next Generation of Smart Manufacturing with Federated Learning -- 11 Towards Open and Agile Big Data Analytics in Financial Sector -- 12 Electric Vehicles for Humans -- 13 Enabling 5G in Europe -- 14 Summary -- References -- Business Models and Ecosystem for Big Data -- 1 Introduction -- 2 Big Data Business Approaches -- 2.1 Optimisation and Improvements -- 2.2 Upgrading and Revaluation -- 2.3 Monetising -- 2.4 Breakthrough -- 3 Data-Driven Business Opportunities -- 4 Leveraging the Data Ecosystems -- 4.1 Data-Sharing Ecosystem -- 4.2 Data Innovation Ecosystems -- 4.3 Value Networks in a Business Ecosystem -- 5 Data-Driven Innovation Framework and Success Stories -- 5.1 The Data-Driven Innovation Framework -- 5.2 Examples of Success Stories -- 5.2.1 Selectionnist -- 5.2.2 Arable -- 6 Conclusion -- References -- Innovation in Times of Big Data and AI: Introducing the Data-Driven Innovation (DDI) Framework -- 1 Introduction -- 2 Data-Driven Innovation -- 2.1 What Are Business Opportunities? -- 2.2 Characteristics of Data-Driven Innovation -- 2.3 How to Screen Data-Driven Innovation? -- 3 The ``Making-of´´ the DDI Framework -- 3.1 State-of-the-Art Analysis -- 3.2 DDI Ontology Building -- 3.3 Data Collection and Coding -- 3.3.1 Selection Criteria -- 3.3.2 Sample Data Generation -- 3.3.3 Coding of Data -- 3.4 Data Analysis -- 4 Findings of the Empirical DDI Research Study -- 4.1 General Findings -- 4.2 Value Proposition -- 4.3 Data -- 4.4 Technology.
4.5 Network Strategies.
Record Nr. UNINA-9910488709403321
Curry Edward  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Innovation revolution in agriculture : a roadmap to value creation / / edited by Hugo Campos
The Innovation revolution in agriculture : a roadmap to value creation / / edited by Hugo Campos
Autore Campos Hugo
Edizione [First edition, 2021.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (xix, 234 pages) : colour illustrations; digital, PDF file(s)
Disciplina 630
Soggetto topico Agriculture
Management
Industrial management
Soggetto non controllato Agriculture
Innovation/Technology Management
Business and Management
value creation
business model
agricultural innovation
open innovation
design thinking
open access
Agricultural science
Research & development management
Industrial applications of scientific research & technological innovation
ISBN 3-030-50991-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- The Quest for Innovation: Addressing User Needs and Value Creation -- Productivity in Agriculture for a Sustainable Future -- Open innovation and value creation in crop genetics -- Rethinking adoption and diffusion as a collective social process. Towards an interactional perspective -- Development of Sustainable Business Models for Innovation in the Swedish Agri-sector - Resource-effective Producer or Stewardship-based Entrepreneur? -- Innovating at marketing and distributing nutritious foods at the Base of the Pyramid (BoP) - Insights from 2SCALE, the largest incubator for inclusive agribusiness in Africa -- Innovation and the quest to feed the world -- Digital Technologies, Big Data, and Agricultural Innovation -- Index.
Record Nr. UNINA-9910420942003321
Campos Hugo  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui