top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Stable Klingen Vectors and Paramodular Newforms / Jennifer Johnson-Leung, Brooks Roberts, Ralf Schmidt
Stable Klingen Vectors and Paramodular Newforms / Jennifer Johnson-Leung, Brooks Roberts, Ralf Schmidt
Autore Johnson-Leung, Jennifer
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica xvii, 362 p. : ill. ; 24 cm
Altri autori (Persone) Roberts, Brooks
Schmidt, Ralf
Soggetto topico 11F46 - Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms [MSC 2020]
11F50 - Jacobi forms [MSC 2020]
11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
11F30 - Fourier coefficients of automorphic forms [MSC 2020]
22E50 - Representations of Lie and linear algebraic groups over local fields [MSC 2020]
22E55 - Representations of Lie and linear algebraic groups over global fields and adèle rings [MSC 2020]
11F60 - Hecke-Petersson operators, differential operators (several variables) [MSC 2020]
Soggetto non controllato Fourier Coefficients of Paramodular Newforms
Fourier Coefficients of Siegel Modular Newforms
Hecke Eigenvalues for Paramodular Newforms
Hecke Eigenvalues for Siegel Modular Forms
Hecke Operators on Siegel Modular Forms
Klingen Vectors
Level Lowering Operators
Paramodular Hecke Operators
Representation Theory of GSp(4)
Representations of GSp(4)
Siegel Modular Forms with Paramodular Level
Siegel Modular Newforms
Siegel modular forms
Stable Klingen Vectors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0269855
Johnson-Leung, Jennifer  
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Stable Klingen Vectors and Paramodular Newforms / Jennifer Johnson-Leung, Brooks Roberts, Ralf Schmidt
Stable Klingen Vectors and Paramodular Newforms / Jennifer Johnson-Leung, Brooks Roberts, Ralf Schmidt
Autore Johnson-Leung, Jennifer
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica xvii, 362 p. : ill. ; 24 cm
Altri autori (Persone) Roberts, Brooks
Schmidt, Ralf
Soggetto topico 11F30 - Fourier coefficients of automorphic forms [MSC 2020]
11F46 - Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms [MSC 2020]
11F50 - Jacobi forms [MSC 2020]
11F60 - Hecke-Petersson operators, differential operators (several variables) [MSC 2020]
11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
22E50 - Representations of Lie and linear algebraic groups over local fields [MSC 2020]
22E55 - Representations of Lie and linear algebraic groups over global fields and adèle rings [MSC 2020]
Soggetto non controllato Fourier Coefficients of Paramodular Newforms
Fourier Coefficients of Siegel Modular Newforms
Hecke Eigenvalues for Paramodular Newforms
Hecke Eigenvalues for Siegel Modular Forms
Hecke Operators on Siegel Modular Forms
Klingen Vectors
Level Lowering Operators
Paramodular Hecke Operators
Representation Theory of GSp(4)
Representations of GSp(4)
Siegel Modular Forms with Paramodular Level
Siegel Modular Newforms
Siegel modular forms
Stable Klingen Vectors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00269855
Johnson-Leung, Jennifer  
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui