top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Data Science / Ilke Demir ... [et al.] editors
Advances in Data Science / Ilke Demir ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xx, 364 p. : ill. ; 24 cm
Soggetto topico 68-XX - Computer science [MSC 2020]
94-XX - Information and communication theory, circuits [MSC 2020]
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
68Txx - Artificial intelligence [MSC 2020]
62-XX - Statistics [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
Soggetto non controllato Data analysis
Discrete approximations
Health science
Incomplete and multi-modal data
Methods involving duality
Networking
Regularization
Spatial-temporal dynamics modeling
Statistical topological learning algorithms
User anonymity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274518
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Advances in Data Science / Ilke Demir ... [et al.] editors
Advances in Data Science / Ilke Demir ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xx, 364 p. : ill. ; 24 cm
Soggetto topico 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
62-XX - Statistics [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
68-XX - Computer science [MSC 2020]
68Txx - Artificial intelligence [MSC 2020]
94-XX - Information and communication theory, circuits [MSC 2020]
94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020]
Soggetto non controllato Data analysis
Discrete approximations
Health science
Incomplete and multi-modal data
Methods involving duality
Networking
Regularization
Spatial-temporal dynamics modeling
Statistical topological learning algorithms
User anonymity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274518
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Computational methods for applied inverse problems [[electronic resource] /] / edited by Yanfei Wang, Anatoly G. Yagola, Changchun Yang
Computational methods for applied inverse problems [[electronic resource] /] / edited by Yanfei Wang, Anatoly G. Yagola, Changchun Yang
Pubbl/distr/stampa Berlin, : De Gruyter, 2012
Descrizione fisica 1 online resource (552 p.)
Disciplina 515
515.35
515/.35
Altri autori (Persone) WangYanfei <1973->
YagolaA. G
YangChangchun <1945->
Collana Inverse and ill-posed problems series
Soggetto topico Inverse problems (Differential equations) - Numerical solutions
Differential equations - Numerical solutions
Soggetto non controllato Computational Method
Geography
Geophysics
Image Processing
Inverse Problem
Oceanography
Operator Theory
Optimization
Regularization
Remote Sensing
ISBN 1-283-85670-0
3-11-025905-2
Classificazione SK 920
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Preface -- Editor's Preface -- Contents -- Part I. Introduction -- Chapter 1. Inverse Problems of Mathematical Physics / Kabanikhin, S. I. -- Part II. Recent Advances in Regularization Theory and Methods -- Chapter 2. Using Parallel Computing for Solving Multidimensional Ill-posed Problems / Lukyanenko, D. V. / Yagola, A. G. -- Chapter 3. Regularization of Fredholm Integral Equations of the First Kind using Nyström Approximation / Nair, M. T. -- Chapter 4. Regularization of Numerical Differentiation: Methods and Applications / Xiao, T. Y. / Zhang, H. / Hao, L. L. -- Chapter 5. Numerical Analytic Continuation and Regularization / Fu, C. L. / Cheng, H. / Ma, Y. J. -- Chapter 6. An Optimal Perturbation Regularization Algorithm for Function Reconstruction and Its Applications / Li, G. S. -- Chapter 7. Filtering and Inverse Problems Solving / Zotov, L. V. / Panteleev, V. L. -- Part III. Optimal Inverse Design and Optimization Methods -- Chapter 8. Inverse Design of Alloys' Chemistry for Specified Thermo-Mechanical Properties by using Multi-objective Optimization / Dulikravich, G. S. / Egorov, I. N. -- Chapter 9. Two Approaches to Reduce the Parameter Identification Errors / Xiang, Z. H. -- Chapter 10. A General Convergence Result for the BFGS Method / Dai, Y. H. -- Part IV. Recent Advances in Inverse Scattering -- Chapter 11. Uniqueness Results for Inverse Scattering Problems / Liu, X. D. / Zhang, B. -- Chapter 12. Shape Reconstruction of Inverse Medium Scattering for the Helmholtz Equation / Bao, G. / Li, P. J. -- Part V. Inverse Vibration, Data Processing and Imaging -- Chapter 13. Numerical Aspects of the Calculation of Molecular Force Fields from Experimental Data / Kuramshina, G. M. / Kochikov, I. V. / Stepanova, A. V. -- Chapter 14. Some Mathematical Problems in Biomedical Imaging / Liu, J. J. / Xu, H. L. -- Part VI Numerical Inversion in Geosciences -- Chapter 15. Numerical Methods for Solving Inverse Hyperbolic Problems / Kabanikhin, S. I. / Shishlenin, M. A. -- Chapter 16. Inversion Studies in Seismic Oceanography / Song, H. B. / Huang, X. H. / Pinheiro, L. M. / Song, Y. / Dong, C. Z. / Bai, Y. -- Chapter 17. Image Resolution Beyond the Classical Limit / Gelius, L. J. -- Chapter 18. Seismic Migration and Inversion / Wang, Y. F. / Li, Z. H. / Yang, C. C. -- Chapter 19. Seismic Wavefields Interpolation Based on Sparse Regularization and Compressive Sensing / Wang, Y. F. / Cao, J. J. / Sun, T. / Yang, C. C. -- Chapter 20. Some Researches on Quantitative Remote Sensing Inversion / Yang, H. -- Index
Record Nr. UNINA-9910786433903321
Berlin, : De Gruyter, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods for Inverse Problems in Imaging / Marco Donatelli, Stefano Serra-Capizzano editors
Computational Methods for Inverse Problems in Imaging / Marco Donatelli, Stefano Serra-Capizzano editors
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica ix, 166 p. : ill. ; 24 cm
Soggetto topico 94-XX - Information and communication theory, circuits [MSC 2020]
65-XX - Numerical analysis [MSC 2020]
Soggetto non controllato Computational methods
Image reconstruction
Inverse Problems
Optimization methods
Regularization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0126791
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Computational Methods for Inverse Problems in Imaging / Marco Donatelli, Stefano Serra-Capizzano editors
Computational Methods for Inverse Problems in Imaging / Marco Donatelli, Stefano Serra-Capizzano editors
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica ix, 166 p. : ill. ; 24 cm
Soggetto topico 65-XX - Numerical analysis [MSC 2020]
94-XX - Information and communication theory, circuits [MSC 2020]
Soggetto non controllato Computational methods
Image reconstruction
Inverse Problems
Optimization methods
Regularization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00126791
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Computer modelling in tomography and ill-posed problems / / M.M. Lavrentèv, S.M. Zerkal and O.E. Trofimov
Computer modelling in tomography and ill-posed problems / / M.M. Lavrentèv, S.M. Zerkal and O.E. Trofimov
Autore Lavrentʹev M. M (Mikhail Mikhaĭlovich)
Edizione [Reprint 2014]
Pubbl/distr/stampa Utrecht ; ; Boston : , : VSP, , 2001
Descrizione fisica 1 online resource (136 pages) : illustrations
Disciplina 516
Collana Inverse and ill-posed problems series
Soggetto topico Geometric tomography
Inverse problems (Differential equations)
Soggetto non controllato Algorithms
Calculation Mathematics
Cone-beam
Ill-posed Problems
Inverse Kinematic Problem
Regularization
Tomography
ISBN 3-11-094093-0
Classificazione ST 640
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Chapter 1. Mathematical basis of the method of computerized -- tomography 11 -- 1.1. Basic notions of the theory of ill-posed problems11 -- 1.2. Problem of integral geometry16 -- 1.3. The Radon transform18 -- 1.4. Radon problem as an example of an ill-posed problem20 -- 1.5. The algorithm of inversion of the two-dimensional Radon -- transform based on the convolution with the generalized -- function l/z225 -- Chapter 2. Cone-beam tomography reconstruction 33 -- 2.1. Reducing the inversion formulas of cone-beam tomography recont -- struction to the form convenient for constructing numerical -- algorithm s33 -- 2.2. Elements of the theory of generalized functions in application to -- problems of inversion of the ray transformation45 -- 2.3. The relations between the Radon, Fourier, -- and ray transformations51 -- Chapter 3. Inverse kinematic problem -- in the tomographic setting 55 -- 3.1. Direct kinematic problem and numerical solution -- for three-dimensional regular media55 -- 3.2. Formulation of the inverse kinematic problem with the use of -- a tomography system of data gathering66 -- 3.3. Deduction of the basic inversion formula and the algorithm of -- solving the inverse kinematic problem in -- three-dimensional linearized formulation68 -- 3.4. Model experiment and numerical study of the algorithm79 -- 3.5. Solution of the inverse kinematic problem by the method of -- computerized tomography for media with opaque inclusions 98 -- Appendix: Reconstruction with the use -- of the standard model 112 -- Bibliography 119.
Record Nr. UNINA-9910788955503321
Lavrentʹev M. M (Mikhail Mikhaĭlovich)  
Utrecht ; ; Boston : , : VSP, , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computer modelling in tomography and ill-posed problems / / M.M. Lavrentèv, S.M. Zerkal and O.E. Trofimov
Computer modelling in tomography and ill-posed problems / / M.M. Lavrentèv, S.M. Zerkal and O.E. Trofimov
Autore Lavrentʹev M. M (Mikhail Mikhaĭlovich)
Edizione [Reprint 2014]
Pubbl/distr/stampa Utrecht ; ; Boston : , : VSP, , 2001
Descrizione fisica 1 online resource (136 pages) : illustrations
Disciplina 516
Collana Inverse and ill-posed problems series
Soggetto topico Geometric tomography
Inverse problems (Differential equations)
Soggetto non controllato Algorithms
Calculation Mathematics
Cone-beam
Ill-posed Problems
Inverse Kinematic Problem
Regularization
Tomography
ISBN 3-11-094093-0
Classificazione ST 640
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Chapter 1. Mathematical basis of the method of computerized -- tomography 11 -- 1.1. Basic notions of the theory of ill-posed problems11 -- 1.2. Problem of integral geometry16 -- 1.3. The Radon transform18 -- 1.4. Radon problem as an example of an ill-posed problem20 -- 1.5. The algorithm of inversion of the two-dimensional Radon -- transform based on the convolution with the generalized -- function l/z225 -- Chapter 2. Cone-beam tomography reconstruction 33 -- 2.1. Reducing the inversion formulas of cone-beam tomography recont -- struction to the form convenient for constructing numerical -- algorithm s33 -- 2.2. Elements of the theory of generalized functions in application to -- problems of inversion of the ray transformation45 -- 2.3. The relations between the Radon, Fourier, -- and ray transformations51 -- Chapter 3. Inverse kinematic problem -- in the tomographic setting 55 -- 3.1. Direct kinematic problem and numerical solution -- for three-dimensional regular media55 -- 3.2. Formulation of the inverse kinematic problem with the use of -- a tomography system of data gathering66 -- 3.3. Deduction of the basic inversion formula and the algorithm of -- solving the inverse kinematic problem in -- three-dimensional linearized formulation68 -- 3.4. Model experiment and numerical study of the algorithm79 -- 3.5. Solution of the inverse kinematic problem by the method of -- computerized tomography for media with opaque inclusions 98 -- Appendix: Reconstruction with the use -- of the standard model 112 -- Bibliography 119.
Record Nr. UNINA-9910813739403321
Lavrentʹev M. M (Mikhail Mikhaĭlovich)  
Utrecht ; ; Boston : , : VSP, , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Autore Lederer, Johannes
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiv, 355 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Calibration
Estimation
Graphical Models
High dimensional inference
High-Dimensional Data
High-dimensional statistics
Lasso
Linear regression
Prediction
R labs
Regularization
Sparsity
Statistical inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277448
Lederer, Johannes  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Autore Lederer, Johannes
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiv, 355 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Calibration
Estimation
Graphical Models
High dimensional inference
High-Dimensional Data
High-dimensional statistics
Lasso
Linear regression
Prediction
R labs
Regularization
Sparsity
Statistical inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277448
Lederer, Johannes  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of Supervised Machine Learning : With Applications in Python, R, and Stata / Giovanni Cerulli
Fundamentals of Supervised Machine Learning : With Applications in Python, R, and Stata / Giovanni Cerulli
Autore Cerulli, Giovanni
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica xxiv, 391 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
68-XX - Computer science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
68T07 - Artificial neural networks and deep learning [MSC 2020]
Soggetto non controllato Artificial Neural Networks
Classification
Deep Learning
Discriminant Analysis
Machine Learnig Applications in Medicine and Epidemiology
Machine Learning Applications in the Social Sciences
Machine learning
Model selection
Nearest Neighbors
Nonparametric Fitting
Ontology of Machine Learning
Python
R software
Regularization
Sentiment analysis
Statistical learning
Statistics
Supervised machine learning
Support Vector Machines
Trees
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00278813
Cerulli, Giovanni  
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui