Invariant Forms on Grassmann Manifolds. (AM-89), Volume 89 / / Wilhelm Stoll |
Autore | Stoll Wilhelm |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (128 pages) |
Disciplina | 514/.224 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Grassmann manifolds
Differential forms Invariants |
Soggetto non controllato |
Calculation
Cohomology ring Cohomology Complex space Cotangent bundle Diagram (category theory) Exterior algebra Grassmannian Holomorphic vector bundle Manifold Regular map (graph theory) Remainder Representation theorem Schubert variety Sesquilinear form Theorem Vector bundle Vector space |
ISBN | 1-4008-8188-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- PREFACE -- GERMAN LETTERS -- INTRODUCTION -- 1. FLAG SPACES -- 2. SCHUBERT VARIETIES -- 3. CHERN FORMS -- 4. THE THEOREM OF BOTT AND CHERN -- 5. THE POINCARÉ DUAL OF A SCHUBERT VARIETY -- 6. MATSUSHIMA'S THEOREM -- 7. THE THEOREMS OF PIERI AND GIAMBELLI -- APPENDIX -- REFERENCES -- INDEX -- Backmatter |
Record Nr. | UNINA-9910154752103321 |
Stoll Wilhelm
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Lie Equations, Vol. I : General Theory. (AM-73) / / Donald Clayton Spencer, Antonio Kumpera |
Autore | Kumpera Antonio |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (312 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Lie algebras Differential equations |
Soggetto non controllato |
Adjoint representation
Adjoint Affine transformation Alexander Grothendieck Analytic function Associative algebra Atlas (topology) Automorphism Bernhard Riemann Big O notation Bundle map Category of topological spaces Cauchy–Riemann equations Coefficient Commutative diagram Commutator Complex conjugate Complex group Complex manifold Computation Conformal map Continuous function Coordinate system Corollary Cotangent bundle Curvature tensor Deformation theory Derivative Diagonal Diffeomorphism Differentiable function Differential form Differential operator Differential structure Direct proof Direct sum Ellipse Endomorphism Equation Exact sequence Exactness Existential quantification Exponential function Exponential map (Riemannian geometry) Exterior derivative Fiber bundle Fibration Frame bundle Frobenius theorem (differential topology) Frobenius theorem (real division algebras) Group isomorphism Groupoid Holomorphic function Homeomorphism Integer J-invariant Jacobian matrix and determinant Jet bundle Linear combination Linear map Manifold Maximal ideal Model category Morphism Nonlinear system Open set Parameter Partial derivative Partial differential equation Pointwise Presheaf (category theory) Pseudo-differential operator Pseudogroup Quantity Regular map (graph theory) Requirement Riemann surface Right inverse Scalar multiplication Sheaf (mathematics) Special case Structure tensor Subalgebra Subcategory Subgroup Submanifold Subset Tangent bundle Tangent space Tangent vector Tensor field Tensor product Theorem Torsion tensor Transpose Variable (mathematics) Vector bundle Vector field Vector space Volume element |
ISBN | 1-4008-8173-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Foreword -- Glossary of Symbols -- Table of Contents -- Introduction -- A. Integrability of Lie Structures -- B. Deformation Theory of Lie Structures -- Chapter I. Jet Sheaves and Differential Equations -- Chapter II. Linear Lie Equations -- Chapter III. Derivations and Brackets -- Chapter IV. Non-Linear Complexes -- Chapter V. Derivations of Jet Forms -- Appendix. Lie Groupoids -- References -- Index |
Record Nr. | UNINA-9910154751903321 |
Kumpera Antonio
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80 / / Morris W. Hirsch, Barry Mazur |
Autore | Hirsch Morris W. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (149 pages) |
Disciplina | 514/.224 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Piecewise linear topology
Manifolds (Mathematics) |
Soggetto non controllato |
Affine transformation
Approximation Associative property Bijection Bundle map Classification theorem Codimension Coefficient Cohomology Commutative property Computation Convex cone Convolution Corollary Counterexample Diffeomorphism Differentiable function Differentiable manifold Differential structure Dimension Direct proof Division by zero Embedding Empty set Equivalence class Equivalence relation Euclidean space Existential quantification Exponential map (Lie theory) Fiber bundle Fibration Functor Grassmannian H-space Homeomorphism Homotopy Integral curve Inverse problem Isomorphism class K0 Linearization Manifold Mathematical induction Milnor conjecture Natural transformation Neighbourhood (mathematics) Normal bundle Obstruction theory Open set Partition of unity Piecewise linear Polyhedron Reflexive relation Regular map (graph theory) Sheaf (mathematics) Smoothing Smoothness Special case Submanifold Tangent bundle Tangent vector Theorem Topological manifold Topological space Topology Transition function Transitive relation Vector bundle Vector field |
ISBN | 1-4008-8168-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- REFERENCES -- CONTENTS -- SMOOTHINGS OF PIECEWISE LINEAR MANIFOLDS I: PRODUCTS / Hirsch, Morris W. -- SMOOTHINGS OF PIECEWISE LINEAR MANIFOLDS II: CLASSIFICATION / Hirsch, Morris W. / Mazur, Barry -- BIBLIOGRAPHY -- Backmatter |
Record Nr. | UNINA-9910154743503321 |
Hirsch Morris W.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|