On the cohomology of certain noncompact Shimura varieties [[electronic resource] /] / Sophie Morel; with an appendix by Robert Kottwitz |
Autore | Morel Sophie <1979-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, c2010 |
Descrizione fisica | 1 online resource (231 p.) |
Disciplina | 516.3/52 |
Collana | Annals of mathematics |
Soggetto topico |
Shimura varieties
Homology theory |
Soggetto non controllato |
Accuracy and precision
Adjoint Algebraic closure Archimedean property Automorphism Base change map Base change Calculation Clay Mathematics Institute Coefficient Compact element Compact space Comparison theorem Conjecture Connected space Connectedness Constant term Corollary Duality (mathematics) Existential quantification Exterior algebra Finite field Finite set Fundamental lemma (Langlands program) Galois group General linear group Haar measure Hecke algebra Homomorphism L-function Logarithm Mathematical induction Mathematician Maximal compact subgroup Maximal ideal Morphism Neighbourhood (mathematics) Open set Parabolic induction Permutation Prime number Ramanujan–Petersson conjecture Reductive group Ring (mathematics) Scientific notation Shimura variety Simply connected space Special case Sub"ient Subalgebra Subgroup Symplectic group Theorem Trace formula Unitary group Weyl group |
ISBN |
1-282-45800-0
1-282-93632-8 9786612936326 9786612458002 1-4008-3539-9 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1. The fixed point formula -- Chapter 2. The groups -- Chapter 3. Discrete series -- Chapter 4. Orbital integrals at p -- Chapter 5. The geometric side of the stable trace formula -- Chapter 6. Stabilization of the fixed point formula -- Chapter 7. Applications -- Chapter 8. The twisted trace formula -- Chapter 9. The twisted fundamental lemma -- Appendix. Comparison of two versions of twisted transfer factors -- Bibliography -- Index |
Record Nr. | UNINA-9910780861803321 |
Morel Sophie <1979-> | ||
Princeton, : Princeton University Press, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan |
Autore | Vogan David A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (320 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Representations of Lie groups |
Soggetto non controllato |
Abelian group
Adjoint representation Annihilator (ring theory) Atiyah–Singer index theorem Automorphic form Automorphism Cartan subgroup Circle group Class function (algebra) Classification theorem Cohomology Commutator subgroup Complete metric space Complex manifold Conjugacy class Cotangent space Dimension (vector space) Discrete series representation Dixmier conjecture Dolbeault cohomology Duality (mathematics) Eigenvalues and eigenvectors Exponential map (Lie theory) Exponential map (Riemannian geometry) Exterior algebra Function space Group homomorphism Harmonic analysis Hecke algebra Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Homogeneous space Homomorphism Induced representation Infinitesimal character Inner automorphism Invariant subspace Irreducibility (mathematics) Irreducible representation Isometry group Isometry K-finite Kazhdan–Lusztig polynomial Langlands decomposition Lie algebra cohomology Lie algebra representation Lie algebra Lie group action Lie group Mathematical induction Maximal compact subgroup Measure (mathematics) Minkowski space Nilpotent group Orbit method Orthogonal group Parabolic induction Principal homogeneous space Principal series representation Projective space Pseudo-Riemannian manifold Pullback (category theory) Ramanujan–Petersson conjecture Reductive group Regularity theorem Representation of a Lie group Representation theorem Representation theory Riemann sphere Riemannian manifold Schwartz space Semisimple Lie algebra Sheaf (mathematics) Sign (mathematics) Special case Spectral theory Sub"ient Subgroup Support (mathematics) Symplectic geometry Symplectic group Symplectic vector space Tangent space Tautological bundle Theorem Topological group Topological space Trivial representation Unitary group Unitary matrix Unitary representation Universal enveloping algebra Vector bundle Weyl algebra Weyl character formula Weyl group Zariski's main theorem Zonal spherical function |
ISBN | 1-4008-8238-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- ACKNOWLEDGEMENTS -- INTRODUCTION -- Chapter 1. COMPACT GROUPS AND THE BOREL-WEIL THEOREM -- Chapter 2. HARISH-CHANDRA MODULES -- Chapter 3. PARABOLIC INDUCTION -- Chapter 4. STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,ℂ) -- Chapter 5. COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY -- Chapter 6. COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY -- Interlude. THE IDEA OF UNIPOTENT REPRESENTATIONS -- Chapter 7. FINITE GROUPS AND UNIPOTENT REPRESENTATIONS -- Chapter 8. LANGLANDS' PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS -- Chapter 9. PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS -- Chapter 10. THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS -- Chapter 11. E-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS -- Chapter 12. ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS -- Chapter 13. EXHAUSTION -- REFERENCES -- Backmatter |
Record Nr. | UNINA-9910154742103321 |
Vogan David A. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|