top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
On the cohomology of certain noncompact Shimura varieties [[electronic resource] /] / Sophie Morel; with an appendix by Robert Kottwitz
On the cohomology of certain noncompact Shimura varieties [[electronic resource] /] / Sophie Morel; with an appendix by Robert Kottwitz
Autore Morel Sophie <1979->
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, c2010
Descrizione fisica 1 online resource (231 p.)
Disciplina 516.3/52
Collana Annals of mathematics
Soggetto topico Shimura varieties
Homology theory
Soggetto non controllato Accuracy and precision
Adjoint
Algebraic closure
Archimedean property
Automorphism
Base change map
Base change
Calculation
Clay Mathematics Institute
Coefficient
Compact element
Compact space
Comparison theorem
Conjecture
Connected space
Connectedness
Constant term
Corollary
Duality (mathematics)
Existential quantification
Exterior algebra
Finite field
Finite set
Fundamental lemma (Langlands program)
Galois group
General linear group
Haar measure
Hecke algebra
Homomorphism
L-function
Logarithm
Mathematical induction
Mathematician
Maximal compact subgroup
Maximal ideal
Morphism
Neighbourhood (mathematics)
Open set
Parabolic induction
Permutation
Prime number
Ramanujan–Petersson conjecture
Reductive group
Ring (mathematics)
Scientific notation
Shimura variety
Simply connected space
Special case
Sub"ient
Subalgebra
Subgroup
Symplectic group
Theorem
Trace formula
Unitary group
Weyl group
ISBN 1-282-45800-0
1-282-93632-8
9786612936326
9786612458002
1-4008-3539-9
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Chapter 1. The fixed point formula -- Chapter 2. The groups -- Chapter 3. Discrete series -- Chapter 4. Orbital integrals at p -- Chapter 5. The geometric side of the stable trace formula -- Chapter 6. Stabilization of the fixed point formula -- Chapter 7. Applications -- Chapter 8. The twisted trace formula -- Chapter 9. The twisted fundamental lemma -- Appendix. Comparison of two versions of twisted transfer factors -- Bibliography -- Index
Record Nr. UNINA-9910780861803321
Morel Sophie <1979->  
Princeton, : Princeton University Press, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan
Autore Vogan David A.
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (320 pages)
Disciplina 512/.55
Collana Annals of Mathematics Studies
Soggetto topico Lie groups
Representations of Lie groups
Soggetto non controllato Abelian group
Adjoint representation
Annihilator (ring theory)
Atiyah–Singer index theorem
Automorphic form
Automorphism
Cartan subgroup
Circle group
Class function (algebra)
Classification theorem
Cohomology
Commutator subgroup
Complete metric space
Complex manifold
Conjugacy class
Cotangent space
Dimension (vector space)
Discrete series representation
Dixmier conjecture
Dolbeault cohomology
Duality (mathematics)
Eigenvalues and eigenvectors
Exponential map (Lie theory)
Exponential map (Riemannian geometry)
Exterior algebra
Function space
Group homomorphism
Harmonic analysis
Hecke algebra
Hilbert space
Hodge theory
Holomorphic function
Holomorphic vector bundle
Homogeneous space
Homomorphism
Induced representation
Infinitesimal character
Inner automorphism
Invariant subspace
Irreducibility (mathematics)
Irreducible representation
Isometry group
Isometry
K-finite
Kazhdan–Lusztig polynomial
Langlands decomposition
Lie algebra cohomology
Lie algebra representation
Lie algebra
Lie group action
Lie group
Mathematical induction
Maximal compact subgroup
Measure (mathematics)
Minkowski space
Nilpotent group
Orbit method
Orthogonal group
Parabolic induction
Principal homogeneous space
Principal series representation
Projective space
Pseudo-Riemannian manifold
Pullback (category theory)
Ramanujan–Petersson conjecture
Reductive group
Regularity theorem
Representation of a Lie group
Representation theorem
Representation theory
Riemann sphere
Riemannian manifold
Schwartz space
Semisimple Lie algebra
Sheaf (mathematics)
Sign (mathematics)
Special case
Spectral theory
Sub"ient
Subgroup
Support (mathematics)
Symplectic geometry
Symplectic group
Symplectic vector space
Tangent space
Tautological bundle
Theorem
Topological group
Topological space
Trivial representation
Unitary group
Unitary matrix
Unitary representation
Universal enveloping algebra
Vector bundle
Weyl algebra
Weyl character formula
Weyl group
Zariski's main theorem
Zonal spherical function
ISBN 1-4008-8238-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- CONTENTS -- ACKNOWLEDGEMENTS -- INTRODUCTION -- Chapter 1. COMPACT GROUPS AND THE BOREL-WEIL THEOREM -- Chapter 2. HARISH-CHANDRA MODULES -- Chapter 3. PARABOLIC INDUCTION -- Chapter 4. STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,ℂ) -- Chapter 5. COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY -- Chapter 6. COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY -- Interlude. THE IDEA OF UNIPOTENT REPRESENTATIONS -- Chapter 7. FINITE GROUPS AND UNIPOTENT REPRESENTATIONS -- Chapter 8. LANGLANDS' PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS -- Chapter 9. PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS -- Chapter 10. THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS -- Chapter 11. E-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS -- Chapter 12. ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS -- Chapter 13. EXHAUSTION -- REFERENCES -- Backmatter
Record Nr. UNINA-9910154742103321
Vogan David A.  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui