Essentials of Integration Theory for Analysis / Daniel W. Stroock
| Essentials of Integration Theory for Analysis / Daniel W. Stroock |
| Autore | Stroock, Daniel W. |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | xvi, 285 p. : ill. ; 24 cm |
| Soggetto topico |
26-XX - Real functions [MSC 2020]
28-XX - Measure and integration [MSC 2020] 28A25 - Integration with respect to measures and other set functions [MSC 2020] 26A42 - Integrals of Riemann, Stieltjes and Lebesgue type [MSC 2020] |
| Soggetto non controllato |
Divergence Theorem
Friedrich's mollifiers Hausdorff Measure Hermite functions Integration theory Jacobi's transformation Lebesgue's differentiation theorem Levy continuity theorem Measure and integration Radon-Nikodym theorem Riemann integration Riemann sum Riesz sunrise lemma |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0249075 |
Stroock, Daniel W.
|
||
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Essentials of Integration Theory for Analysis / Daniel W. Stroock
| Essentials of Integration Theory for Analysis / Daniel W. Stroock |
| Autore | Stroock, Daniel W. |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | xvi, 285 p. : ill. ; 24 cm |
| Soggetto topico |
26-XX - Real functions [MSC 2020]
26A42 - Integrals of Riemann, Stieltjes and Lebesgue type [MSC 2020] 28-XX - Measure and integration [MSC 2020] 28A25 - Integration with respect to measures and other set functions [MSC 2020] |
| Soggetto non controllato |
Divergence Theorem
Friedrich's mollifiers Hausdorff Measure Hermite functions Integration theory Jacobi's transformation Lebesgue's differentiation theorem Levy continuity theorem Measure and integration Radon-Nikodym theorem Riemann integration Riemann sum Riesz sunrise lemma |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00249075 |
Stroock, Daniel W.
|
||
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Measure and Integration / Satish Shirali, Harkrishan Lal Vasudeva
| Measure and Integration / Satish Shirali, Harkrishan Lal Vasudeva |
| Autore | Shirali, Satish |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xii, 598 p. : ill. ; 24 cm |
| Altri autori (Persone) | Vasudeva, Harkrishan Lal |
| Soggetto topico |
28-XX - Measure and integration [MSC 2020]
28Axx - Classical measure theory [MSC 2020] |
| Soggetto non controllato |
Absolute continuity
Bounded variation Cantor set Fourier series Fubini's Theorem Integration theory Lebesgue measure Lp spaces Measure Theory Product measure Radon-Nikodym theorem Tonelli theorem Vitali covering theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0127019 |
Shirali, Satish
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Measure and Integration / Satish Shirali, Harkrishan Lal Vasudeva
| Measure and Integration / Satish Shirali, Harkrishan Lal Vasudeva |
| Autore | Shirali, Satish |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xii, 598 p. : ill. ; 24 cm |
| Altri autori (Persone) | Vasudeva, Harkrishan Lal |
| Soggetto topico |
28-XX - Measure and integration [MSC 2020]
28Axx - Classical measure theory [MSC 2020] |
| Soggetto non controllato |
Absolute continuity
Bounded variation Cantor set Fourier series Fubini's Theorem Integration theory Lebesgue measure Lp spaces Measure Theory Product measure Radon-Nikodym theorem Tonelli theorem Vitali covering theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00127019 |
Shirali, Satish
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||