Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019 |
Autore | Matese Alessandro |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (184 p.) |
Soggetto topico |
Research & information: general
Biology, life sciences Forestry & related industries |
Soggetto non controllato |
unmanned aerial vehicles
seedling detection forest regeneration reforestation establishment survey machine learning multispectral classification UAV photogrammetry forest modeling ancient trees measurement tree age prediction Mauritia flexuosa semantic segmentation end-to-end learning convolutional neural network forest inventory Unmanned Aerial Systems (UAS) structure from motion (SfM) Unmanned Aerial Vehicles (UAV) Photogrammetry Thematic Mapping Accuracy Assessment Reference Data Forest Sampling Remote Sensing Robinia pseudoacacia L. reproduction spreading short rotation coppice unmanned aerial system (UAS) object-based image analysis (OBIA) convolutional neural network (CNN) juniper woodlands ecohydrology remote sensing unmanned aerial systems central Oregon rangelands seedling stand inventorying photogrammetric point clouds hyperspectral imagery leaf-off leaf-on UAV multispectral image forest fire burn severity classification precision agriculture biomass evaluation image processing Castanea sativa unmanned aerial vehicles (UAV) precision forestry forestry applications RGB imagery |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Forestry Applications of Unmanned Aerial Vehicles |
Record Nr. | UNINA-9910557112103321 |
Matese Alessandro
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
UAVs for Vegetation Monitoring |
Autore | de Castro Megías Ana |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (452 p.) |
Soggetto topico | Research & information: general |
Soggetto non controllato |
UAS
UAV vegetation cover multispectral land cover forest Acacia Indonesia tropics vegetation ground cover vegetation indices agro-environmental measures olive groves southern Spain sUAS water stress ornamental container-grown artificial intelligence machine learning deep learning neural network visual recognition precision agriculture canopy cover image analysis crop mapping evapotranspiration (ET) GRAPEX remote sensing Two Source Energy Balance model (TSEB) contextual spatial domain/resolution data aggregation eddy covariance (EC) Fusarium wilt crop disease banana multispectral remote sensing purple rapeseed leaves unmanned aerial vehicle U-Net plant segmentation nitrogen stress Glycine max RGB canopy height close remote sensing growth model curve fitting NDVI solar zenith angle flight altitude time of day operating parameters CNN Faster RCNN SSD Inception v2 patch-based CNN MobileNet v2 detection performance inference time disease detection cotton root rot plant-level single-plant plant-by-plant classification UAV remote sensing crop monitoring RGB imagery multispectral imagery century-old biochar semantic segmentation random forest crop canopy multispectral image chlorophyll content remote sensing technique individual plant segmentation plant detection transfer learning maize tassel tassel branch number convolution neural network VGG16 plant nitrogen estimation vegetation index image segmentation transpiration method comparison oil palm multiple linear regression support vector machine artificial neural network UAV hyperspectral wheat yellow rust disease monitoring texture spatial resolution RGB camera thermal camera drought tolerance forage grass HSV CIELab broad-sense heritability phenotyping gap high throughput field phenotyping UAV digital images winter wheat biomass multiscale textures red-edge spectra least squares support vector machine variable importance drone hyperspectral thermal nutrient deficiency weed detection disease diagnosis plant trails |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557661103321 |
de Castro Megías Ana
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|