top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analysis of an Intelligence Dataset
Analysis of an Intelligence Dataset
Autore Myszkowski Nils
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (166 p.)
Soggetto topico Psychology
Soggetto non controllato ability-based guessing
Bayesian statistics
bi-factor
brms
classical test theory
dimensionality
distractor analysis
distractors
E-assessment
exploratory graph analysis
fused grouped regularization
fused regularization
general mental ability
intelligence
intelligence tests
interaction model
invariant item ordering
IRT
item analysis
Item Response Theory
item-response theory
Mokken scale analysis
n/a
nested logit models
non-parametric item response theory
parallel analysis
psychometrics
R
Raven matrices
Raven's progressive matrices
regularization
regularized latent class analysis
Stan
Standard Progressive Matrices
Standard Progressive Matrices test
target rotation
test-item regression
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557153803321
Myszkowski Nils  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNISA-996495166503316
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Natural Language Processing Using R : Pocket Primer / / Oswald Campesato
Natural Language Processing Using R : Pocket Primer / / Oswald Campesato
Autore Campesato Oswald
Edizione [1st ed.]
Pubbl/distr/stampa Dulles, VA : , : Mercury Learning and Information, , 2022
Descrizione fisica 1 online resource (xviii, 246 pages)
Disciplina 006.35
Collana Pocket Primer
Soggetto topico Natural language processing
Soggetto non controllato Computer Science
Data Analytics
Machine Learning
Natural Language Processing
R
ISBN 1-68392-729-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1: Introduction to R. -- 2: Conditionals, Loops, and Data Frames. -- 3: Working with Functions in R. -- 4. NLP Concepts (I). -- 5. NLP Concepts (II). -- 6: NLP and R. -- 7: Transformer, BERT, and GPT. -- Appendices. -- Index.
Record Nr. UNINA-9910861958303321
Campesato Oswald  
Dulles, VA : , : Mercury Learning and Information, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensors for Ultrasonic NDT in Harsh Environments
Sensors for Ultrasonic NDT in Harsh Environments
Autore Sinclair Anthony N
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (120 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato dry coupling
elevated temperature
EMAT sensor
FBR
field-deployable sensor
gallium phosphate
guided wave
guided-wave send-receive
harsh environment
high temperature
high-temperature monitoring
high-temperature ultrasonic testing
imaging
in-service inspection
inspection
ISI&
L-waves
liquid sodium
lithium niobate
NDE
NDE (Non Destructive Evaluation)
NDT
NDT (Non Destructive Testing)
neutron irradiation
non-destructive evaluation
nondestructive testing
nuclear power plants
Phased Array
piezocomposites
piezoelectric
piezoelectric wafer active sensor
PMN-PT
pressurized water reactor fuel rods
R
radiation
radiation resistance
reactor
SFR
sodium
spray-on transducers
structural health monitoring
thickness shear
TUCSS
ultrasonic
ultrasonic transducer
ultrasound
ISBN 3-03928-423-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404083303321
Sinclair Anthony N  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Socio-Environmental Vulnerability Assessment for Sustainable Management
Socio-Environmental Vulnerability Assessment for Sustainable Management
Autore Szewrański Szymon
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (396 p.)
Soggetto topico Research and information: general
Soggetto non controllato acoustic space
adaptability
aging
Aksu-Jabagly nature reserve
analytical hierarchy process
ArcGIS
assessment
climate
climate analogues
climate change
cluster
clustering
community-based assessment
cross-sectoral partnerships
cycling
cycling routes
dataset
decision support system
eco-environmental risk assessment
ecological restoration
ecological vulnerability
education
energy from biomass
environmental flow
environmental hazards
Factor Analysis on Mixed Data (FAMD)
farm management
flood risk
fortified landscape
geospatial analysis
geospatial information
GIS
green infrastructure
green roofs
healthcare facilities
heritage protection
hydropower production
impact
impact perception
indicators
indigenous peoples
integrated environmental assessment
integrated planning index
inter-municipal cooperation
Jiuqu stream
Kazakhstan
land use planning
local development
meteorology
mineral resources
mountain region
multidimensional statistical analysis
municipal waste
municipalities
municipality
n/a
national park
natural environment
nature protection
Nepal
noise
Nysa Kłodzka sub-basin
open-source software
pellets
performance system
periodization
place-based and integrated development
Poland
political environment
preventive healthcare
quality of runoff water
questionnaire survey
R
renewable energy
resource-based economy
SDG implementation
slow cities
society
socio-ecological system
socio-environmental vulnerability
soil water retention
solar energy radiation
spatial policy
stakeholders
Support Vector Machines
sustainable development
sustainable economy
sustainable management
sustainable mobility
sustainable tourism
synanthropic flora
SYNOP
Tableau
technical infrastructure
technogenic soil
tourism impact
traffic safety
urban planning
urban vegetation
vulnerability and adaptation assessment
Ward's method
water resources
watershed management
wood waste
world heritage
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557605203321
Szewrański Szymon  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Autore Fortino Andres G.
Pubbl/distr/stampa Dulles : , : Mercury Learning & Information, , [2021]
Descrizione fisica 1 online resource (332 pages)
Disciplina 650.02855369
Soggetto topico Business - Decision making - Computer programs
Text processing (Computer science)
Soggetto non controllato Business Communication
Computer Science
Data Analytics
Data Visualization
Excel
R
ISBN 1-68392-664-1
1-68392-665-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface -- On the Companion Files -- Acknowledgements -- Chapter 1 : Framing Analytical Questions -- Data is the New Oil -- The World of the Business Data Analyst -- How Does Data Analysis Relate to Decision Making? -- How Do We Frame Analytical Questions? -- What are the Characteristics of Well-framed Analytical Questions? -- Exercise 1.1 - Case Study Using Dataset K: Titanic Disaster -- What are Some Examples of Text-Based Analytical Questions? -- Additional Case Study Using Dataset J: Remote Learning Student Survey -- References -- Chapter 2 : Analytical Tool Sets -- Tool Sets for Text Analytics -- Excel -- Microsoft Word -- Adobe Acrobat -- SAS JMP -- R and RStudio -- Voyant -- Java -- Stanford Named Entity Recognizer (NER) -- Topic Modeling Tool -- References -- Chapter 3 : Text Data Sources and Formats -- Sources and Formats of Text Data -- Social Media Data -- Customer opinion data from commercial sites -- Email -- Documents -- Surveys -- Websites -- Chapter 4 : Preparing the Data File -- What is Data Shaping? -- The Flat File Format -- Shaping the Text Variable in a Table -- Bag-of-Words Representation -- Single Text Files -- Exercise 4.1 - Case Study Using Dataset L: Resumes -- Exercise 4.2 - Case Study Using Dataset D: Occupation Descriptions -- Additional Exercise 4.3 - Case Study Using Dataset I: NAICS Codes -- Aggregating Across Rows and Columns -- Exercise 4.4 - Case Study Using Dataset D: Occupation Descriptions -- Additional Advanced Exercise 4.5 - Case Study Using Dataset E: Large Data Files -- Additional Advanced Exercise 4.6 - Case Study Using Dataset F: The Federalist Papers -- References -- Chapter 5 : Word Frequency Analysis -- What is Word Frequency Analysis? -- How Does It Apply to Text Business Data Analysis? -- Exercise 5.1 - Case Study Using Dataset A: Training Survey.
Exercise 5.2 - Case Study Using Dataset D: Job Descriptions -- Exercise 5.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 5.4 - Case Study Using Dataset B: Consumer Complaints -- Chapter 6 : Keyword Analysis -- Exercise 6.1 - Case Study Using Dataset D: Resume and Job Description -- Exercise 6.2 - Case Study Using Dataset G: University Curriculum -- Exercise 6.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 6.4 - Case Study Using Dataset B: Customer Complaints -- Chapter 7 : Sentiment Analysis -- What is Sentiment Analysis? -- Exercise 7.1 - Case Study Using Dataset C: Product Reviews - Rubbermaid -- Exercise 7.2 - Case Study Using Dataset C: Product Reviews-Windex -- Exercise 7.3 - Case Study Using Dataset C: Product Reviews-Both Brands -- Chapter 8 : Visualizing Text Data -- What Is Data Visualization Used For? -- Exercise 8.1 - Case Study Using Dataset A: Training Survey -- Exercise 8.2 - Case Study Using Dataset B: Consumer Complaints -- Exercise 8.3 - Case Study Using Dataset C: Product Reviews -- Exercise 8.4 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 9 : Coding Text Data -- What is a Code? -- What are the Common Approaches to Coding Text Data? -- What is Inductive Coding? -- Exercise 9.1 - Case Study Using Dataset A: Training -- Exercise 9.2 - Case Study Using Dataset J: Remote Learning -- Exercise 9.3 - Case Study Using Dataset E: Large Text Files -- Affinity Diagram Coding -- Exercise 9.4 - Case Study Using Dataset M: Onboarding Brainstorming -- References -- Chapter 10 : Named Entity Recognition -- Named Entity Recognition -- What is a Named Entity? -- Common Approaches to Extracting Named Entities -- Classifiers - The Core NER Process -- What Does This Mean for Business? -- Exercise 10.1 - Using the Stanford NER -- Exercise 10.2 - Example Cases.
Exercise 10.2 - Case Study Using Dataset H: Corporate Financial Reports -- Additional Exercise 10.3 - Case Study Using Dataset L: Corporate Financial Reports -- Exercise 10.4 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 10.5 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 11 : Topic Recognition in Documents -- Information Retrieval -- Document Characterization -- Topic Recognition -- Exercises -- Exercise 11.1 - Case Study Using Dataset G: University Curricula -- Exercise 11.2 - Case Study Using Dataset E: Large Text Files -- Exercise 11.3 - Case Study Using Dataset E: Large Text Files -- Exercise 11.4 - Case Study Using Dataset E: Large Text Files -- Exercise 11.5 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.6 - Case Study Using Dataset P: Patents -- Additional Exercise 11.7 - Case Study Using Dataset F: Federalist Papers -- Additional Exercise 11.8 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.9- Case Study Using Dataset N: Sonnets -- References -- Chapter 12 : Text Similarity Scoring -- What is Text Similarity Scoring? -- Text Similarity Scoring Exercises -- Exercise 12.1 - Case Study Using Dataset D: Occupation Description -- Analysis using R -- Exercise 12.2 - Case D: Resume and Job Description -- Reference -- Chapter 13 : Analysis of Large Datasets by Sampling -- Using Sampling to Work with Large Data Files -- Exercise 13.1 - Big Data Analysis -- Additional Case Study Using Dataset E: BankComplaints Big Data File -- Chapter 14 : Installing R and RStudio -- Installing R -- Install R Software for a Mac System -- Installing RStudio -- Reference -- Chapter 15 : Installing the Entity Extraction Tool -- Downloading and Installing the Tool -- The NER Graphical User Interface -- Reference -- Chapter 16 : Installing the Topic Modeling Tool.
Installing and Using the Topic Modeling Tool -- Install the tool -- For Macs -- For Windows PCs -- UTF-8 caveat -- Setting up the workspace -- Workspace Directory -- Using the Tool -- Select metadata file -- Selecting the number of topics -- Analyzing the Output -- Multiple Passes for Optimization -- The Output Files -- Chapter 17 : Installing the Voyant Text Analysis Tool -- Install or Update Java -- Installation of Voyant Server -- The Voyant Server -- Downloading VoyantServer -- Running Voyant Server -- Controlling the Voyant Server -- Testing the Installation -- Reference -- INDEX.
Record Nr. UNINA-9910794555103321
Fortino Andres G.  
Dulles : , : Mercury Learning & Information, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Autore Fortino Andres G.
Pubbl/distr/stampa Dulles : , : Mercury Learning & Information, , [2021]
Descrizione fisica 1 online resource (332 pages)
Disciplina 650.02855369
Soggetto topico Business - Decision making - Computer programs
Text processing (Computer science)
Soggetto non controllato Business Communication
Computer Science
Data Analytics
Data Visualization
Excel
R
ISBN 1-68392-664-1
1-68392-665-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface -- On the Companion Files -- Acknowledgements -- Chapter 1 : Framing Analytical Questions -- Data is the New Oil -- The World of the Business Data Analyst -- How Does Data Analysis Relate to Decision Making? -- How Do We Frame Analytical Questions? -- What are the Characteristics of Well-framed Analytical Questions? -- Exercise 1.1 - Case Study Using Dataset K: Titanic Disaster -- What are Some Examples of Text-Based Analytical Questions? -- Additional Case Study Using Dataset J: Remote Learning Student Survey -- References -- Chapter 2 : Analytical Tool Sets -- Tool Sets for Text Analytics -- Excel -- Microsoft Word -- Adobe Acrobat -- SAS JMP -- R and RStudio -- Voyant -- Java -- Stanford Named Entity Recognizer (NER) -- Topic Modeling Tool -- References -- Chapter 3 : Text Data Sources and Formats -- Sources and Formats of Text Data -- Social Media Data -- Customer opinion data from commercial sites -- Email -- Documents -- Surveys -- Websites -- Chapter 4 : Preparing the Data File -- What is Data Shaping? -- The Flat File Format -- Shaping the Text Variable in a Table -- Bag-of-Words Representation -- Single Text Files -- Exercise 4.1 - Case Study Using Dataset L: Resumes -- Exercise 4.2 - Case Study Using Dataset D: Occupation Descriptions -- Additional Exercise 4.3 - Case Study Using Dataset I: NAICS Codes -- Aggregating Across Rows and Columns -- Exercise 4.4 - Case Study Using Dataset D: Occupation Descriptions -- Additional Advanced Exercise 4.5 - Case Study Using Dataset E: Large Data Files -- Additional Advanced Exercise 4.6 - Case Study Using Dataset F: The Federalist Papers -- References -- Chapter 5 : Word Frequency Analysis -- What is Word Frequency Analysis? -- How Does It Apply to Text Business Data Analysis? -- Exercise 5.1 - Case Study Using Dataset A: Training Survey.
Exercise 5.2 - Case Study Using Dataset D: Job Descriptions -- Exercise 5.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 5.4 - Case Study Using Dataset B: Consumer Complaints -- Chapter 6 : Keyword Analysis -- Exercise 6.1 - Case Study Using Dataset D: Resume and Job Description -- Exercise 6.2 - Case Study Using Dataset G: University Curriculum -- Exercise 6.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 6.4 - Case Study Using Dataset B: Customer Complaints -- Chapter 7 : Sentiment Analysis -- What is Sentiment Analysis? -- Exercise 7.1 - Case Study Using Dataset C: Product Reviews - Rubbermaid -- Exercise 7.2 - Case Study Using Dataset C: Product Reviews-Windex -- Exercise 7.3 - Case Study Using Dataset C: Product Reviews-Both Brands -- Chapter 8 : Visualizing Text Data -- What Is Data Visualization Used For? -- Exercise 8.1 - Case Study Using Dataset A: Training Survey -- Exercise 8.2 - Case Study Using Dataset B: Consumer Complaints -- Exercise 8.3 - Case Study Using Dataset C: Product Reviews -- Exercise 8.4 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 9 : Coding Text Data -- What is a Code? -- What are the Common Approaches to Coding Text Data? -- What is Inductive Coding? -- Exercise 9.1 - Case Study Using Dataset A: Training -- Exercise 9.2 - Case Study Using Dataset J: Remote Learning -- Exercise 9.3 - Case Study Using Dataset E: Large Text Files -- Affinity Diagram Coding -- Exercise 9.4 - Case Study Using Dataset M: Onboarding Brainstorming -- References -- Chapter 10 : Named Entity Recognition -- Named Entity Recognition -- What is a Named Entity? -- Common Approaches to Extracting Named Entities -- Classifiers - The Core NER Process -- What Does This Mean for Business? -- Exercise 10.1 - Using the Stanford NER -- Exercise 10.2 - Example Cases.
Exercise 10.2 - Case Study Using Dataset H: Corporate Financial Reports -- Additional Exercise 10.3 - Case Study Using Dataset L: Corporate Financial Reports -- Exercise 10.4 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 10.5 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 11 : Topic Recognition in Documents -- Information Retrieval -- Document Characterization -- Topic Recognition -- Exercises -- Exercise 11.1 - Case Study Using Dataset G: University Curricula -- Exercise 11.2 - Case Study Using Dataset E: Large Text Files -- Exercise 11.3 - Case Study Using Dataset E: Large Text Files -- Exercise 11.4 - Case Study Using Dataset E: Large Text Files -- Exercise 11.5 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.6 - Case Study Using Dataset P: Patents -- Additional Exercise 11.7 - Case Study Using Dataset F: Federalist Papers -- Additional Exercise 11.8 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.9- Case Study Using Dataset N: Sonnets -- References -- Chapter 12 : Text Similarity Scoring -- What is Text Similarity Scoring? -- Text Similarity Scoring Exercises -- Exercise 12.1 - Case Study Using Dataset D: Occupation Description -- Analysis using R -- Exercise 12.2 - Case D: Resume and Job Description -- Reference -- Chapter 13 : Analysis of Large Datasets by Sampling -- Using Sampling to Work with Large Data Files -- Exercise 13.1 - Big Data Analysis -- Additional Case Study Using Dataset E: BankComplaints Big Data File -- Chapter 14 : Installing R and RStudio -- Installing R -- Install R Software for a Mac System -- Installing RStudio -- Reference -- Chapter 15 : Installing the Entity Extraction Tool -- Downloading and Installing the Tool -- The NER Graphical User Interface -- Reference -- Chapter 16 : Installing the Topic Modeling Tool.
Installing and Using the Topic Modeling Tool -- Install the tool -- For Macs -- For Windows PCs -- UTF-8 caveat -- Setting up the workspace -- Workspace Directory -- Using the Tool -- Select metadata file -- Selecting the number of topics -- Analyzing the Output -- Multiple Passes for Optimization -- The Output Files -- Chapter 17 : Installing the Voyant Text Analysis Tool -- Install or Update Java -- Installation of Voyant Server -- The Voyant Server -- Downloading VoyantServer -- Running Voyant Server -- Controlling the Voyant Server -- Testing the Installation -- Reference -- INDEX.
Record Nr. UNINA-9910806102003321
Fortino Andres G.  
Dulles : , : Mercury Learning & Information, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui