top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analysis of an Intelligence Dataset
Analysis of an Intelligence Dataset
Autore Myszkowski Nils
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (166 p.)
Soggetto topico Psychology
Soggetto non controllato Raven matrices
Standard Progressive Matrices test
dimensionality
bi-factor
parallel analysis
target rotation
exploratory graph analysis
E-assessment
general mental ability
nested logit models
item-response theory
ability-based guessing
Standard Progressive Matrices
Item Response Theory
Bayesian statistics
brms
Stan
R
Raven's progressive matrices
intelligence
distractors
item analysis
intelligence tests
classical test theory
IRT
interaction model
test-item regression
Mokken scale analysis
non-parametric item response theory
psychometrics
invariant item ordering
regularized latent class analysis
regularization
fused regularization
fused grouped regularization
distractor analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557153803321
Myszkowski Nils  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNISA-996495166503316
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNINA-9910623993803321
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Natural Language Processing Using R : Pocket Primer / / Oswald Campesato
Natural Language Processing Using R : Pocket Primer / / Oswald Campesato
Autore Campesato Oswald
Edizione [1st ed.]
Pubbl/distr/stampa Dulles, VA : , : Mercury Learning and Information, , 2022
Descrizione fisica 1 online resource (xviii, 246 pages)
Disciplina 006.35
Collana Pocket Primer
Soggetto topico Natural language processing
Soggetto non controllato Computer Science
Data Analytics
Machine Learning
Natural Language Processing
R
ISBN 1-68392-729-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1: Introduction to R. -- 2: Conditionals, Loops, and Data Frames. -- 3: Working with Functions in R. -- 4. NLP Concepts (I). -- 5. NLP Concepts (II). -- 6: NLP and R. -- 7: Transformer, BERT, and GPT. -- Appendices. -- Index.
Record Nr. UNINA-9910861958303321
Campesato Oswald  
Dulles, VA : , : Mercury Learning and Information, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensors for Ultrasonic NDT in Harsh Environments
Sensors for Ultrasonic NDT in Harsh Environments
Autore Sinclair Anthony N
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (120 p.)
Soggetto non controllato PMN-PT
neutron irradiation
TUCSS
L-waves
field-deployable sensor
structural health monitoring
ultrasonic
piezoelectric wafer active sensor
nondestructive testing
high-temperature monitoring
FBR
gallium phosphate
NDT (Non Destructive Testing)
inspection
guided wave
elevated temperature
imaging
sodium
pressurized water reactor fuel rods
high-temperature ultrasonic testing
ultrasonic transducer
dry coupling
reactor
lithium niobate
non-destructive evaluation
guided-wave send–receive
spray-on transducers
NDE
piezoelectric
harsh environment
R
EMAT sensor
piezocomposites
ISI&
SFR
NDT
liquid sodium
thickness shear
Phased Array
NDE (Non Destructive Evaluation)
ultrasound
high temperature
radiation
radiation resistance
in-service inspection
nuclear power plants
ISBN 3-03928-423-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404083303321
Sinclair Anthony N  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Socio-Environmental Vulnerability Assessment for Sustainable Management
Socio-Environmental Vulnerability Assessment for Sustainable Management
Autore Szewrański Szymon
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (396 p.)
Soggetto topico Research & information: general
Soggetto non controllato energy from biomass
pellets
wood waste
municipal waste
noise
acoustic space
socio-environmental vulnerability
Support Vector Machines
spatial policy
preventive healthcare
healthcare facilities
decision support system
renewable energy
solar energy radiation
sustainable development
ArcGIS
Tableau
inter-municipal cooperation
cross-sectoral partnerships
place-based and integrated development
sustainable management
integrated planning index
Poland
eco-environmental risk assessment
land use planning
analytical hierarchy process
GIS
mountain region
Nepal
political environment
sustainable tourism
impact
world heritage
Aksu-Jabagly nature reserve
Kazakhstan
R
open-source software
dataset
meteorology
climate
SYNOP
geospatial information
cluster
sustainable economy
SDG implementation
vulnerability and adaptation assessment
climate change
ecological restoration
watershed management
community-based assessment
indigenous peoples
adaptability
socio-ecological system
flood risk
municipality
Nysa Kłodzka sub-basin
local development
municipalities
nature protection
national park
technical infrastructure
questionnaire survey
climate analogues
Factor Analysis on Mixed Data (FAMD)
clustering
education
farm management
ecological vulnerability
geospatial analysis
natural environment
society
aging
environmental hazards
periodization
multidimensional statistical analysis
Ward's method
green infrastructure
technogenic soil
soil water retention
synanthropic flora
urban vegetation
heritage protection
fortified landscape
green roofs
integrated environmental assessment
quality of runoff water
performance system
cycling
cycling routes
slow cities
traffic safety
sustainable mobility
urban planning
water resources
environmental flow
hydropower production
Jiuqu stream
tourism impact
impact perception
stakeholders
assessment
indicators
resource-based economy
mineral resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557605203321
Szewrański Szymon  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Autore Fortino Andres G.
Pubbl/distr/stampa Dulles : , : Mercury Learning & Information, , [2021]
Descrizione fisica 1 online resource (332 pages)
Disciplina 650.02855369
Soggetto topico Business - Decision making - Computer programs
Text processing (Computer science)
Soggetto non controllato Business Communication
Computer Science
Data Analytics
Data Visualization
Excel
R
ISBN 1-68392-664-1
1-68392-665-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface -- On the Companion Files -- Acknowledgements -- Chapter 1 : Framing Analytical Questions -- Data is the New Oil -- The World of the Business Data Analyst -- How Does Data Analysis Relate to Decision Making? -- How Do We Frame Analytical Questions? -- What are the Characteristics of Well-framed Analytical Questions? -- Exercise 1.1 - Case Study Using Dataset K: Titanic Disaster -- What are Some Examples of Text-Based Analytical Questions? -- Additional Case Study Using Dataset J: Remote Learning Student Survey -- References -- Chapter 2 : Analytical Tool Sets -- Tool Sets for Text Analytics -- Excel -- Microsoft Word -- Adobe Acrobat -- SAS JMP -- R and RStudio -- Voyant -- Java -- Stanford Named Entity Recognizer (NER) -- Topic Modeling Tool -- References -- Chapter 3 : Text Data Sources and Formats -- Sources and Formats of Text Data -- Social Media Data -- Customer opinion data from commercial sites -- Email -- Documents -- Surveys -- Websites -- Chapter 4 : Preparing the Data File -- What is Data Shaping? -- The Flat File Format -- Shaping the Text Variable in a Table -- Bag-of-Words Representation -- Single Text Files -- Exercise 4.1 - Case Study Using Dataset L: Resumes -- Exercise 4.2 - Case Study Using Dataset D: Occupation Descriptions -- Additional Exercise 4.3 - Case Study Using Dataset I: NAICS Codes -- Aggregating Across Rows and Columns -- Exercise 4.4 - Case Study Using Dataset D: Occupation Descriptions -- Additional Advanced Exercise 4.5 - Case Study Using Dataset E: Large Data Files -- Additional Advanced Exercise 4.6 - Case Study Using Dataset F: The Federalist Papers -- References -- Chapter 5 : Word Frequency Analysis -- What is Word Frequency Analysis? -- How Does It Apply to Text Business Data Analysis? -- Exercise 5.1 - Case Study Using Dataset A: Training Survey.
Exercise 5.2 - Case Study Using Dataset D: Job Descriptions -- Exercise 5.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 5.4 - Case Study Using Dataset B: Consumer Complaints -- Chapter 6 : Keyword Analysis -- Exercise 6.1 - Case Study Using Dataset D: Resume and Job Description -- Exercise 6.2 - Case Study Using Dataset G: University Curriculum -- Exercise 6.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 6.4 - Case Study Using Dataset B: Customer Complaints -- Chapter 7 : Sentiment Analysis -- What is Sentiment Analysis? -- Exercise 7.1 - Case Study Using Dataset C: Product Reviews - Rubbermaid -- Exercise 7.2 - Case Study Using Dataset C: Product Reviews-Windex -- Exercise 7.3 - Case Study Using Dataset C: Product Reviews-Both Brands -- Chapter 8 : Visualizing Text Data -- What Is Data Visualization Used For? -- Exercise 8.1 - Case Study Using Dataset A: Training Survey -- Exercise 8.2 - Case Study Using Dataset B: Consumer Complaints -- Exercise 8.3 - Case Study Using Dataset C: Product Reviews -- Exercise 8.4 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 9 : Coding Text Data -- What is a Code? -- What are the Common Approaches to Coding Text Data? -- What is Inductive Coding? -- Exercise 9.1 - Case Study Using Dataset A: Training -- Exercise 9.2 - Case Study Using Dataset J: Remote Learning -- Exercise 9.3 - Case Study Using Dataset E: Large Text Files -- Affinity Diagram Coding -- Exercise 9.4 - Case Study Using Dataset M: Onboarding Brainstorming -- References -- Chapter 10 : Named Entity Recognition -- Named Entity Recognition -- What is a Named Entity? -- Common Approaches to Extracting Named Entities -- Classifiers - The Core NER Process -- What Does This Mean for Business? -- Exercise 10.1 - Using the Stanford NER -- Exercise 10.2 - Example Cases.
Exercise 10.2 - Case Study Using Dataset H: Corporate Financial Reports -- Additional Exercise 10.3 - Case Study Using Dataset L: Corporate Financial Reports -- Exercise 10.4 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 10.5 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 11 : Topic Recognition in Documents -- Information Retrieval -- Document Characterization -- Topic Recognition -- Exercises -- Exercise 11.1 - Case Study Using Dataset G: University Curricula -- Exercise 11.2 - Case Study Using Dataset E: Large Text Files -- Exercise 11.3 - Case Study Using Dataset E: Large Text Files -- Exercise 11.4 - Case Study Using Dataset E: Large Text Files -- Exercise 11.5 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.6 - Case Study Using Dataset P: Patents -- Additional Exercise 11.7 - Case Study Using Dataset F: Federalist Papers -- Additional Exercise 11.8 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.9- Case Study Using Dataset N: Sonnets -- References -- Chapter 12 : Text Similarity Scoring -- What is Text Similarity Scoring? -- Text Similarity Scoring Exercises -- Exercise 12.1 - Case Study Using Dataset D: Occupation Description -- Analysis using R -- Exercise 12.2 - Case D: Resume and Job Description -- Reference -- Chapter 13 : Analysis of Large Datasets by Sampling -- Using Sampling to Work with Large Data Files -- Exercise 13.1 - Big Data Analysis -- Additional Case Study Using Dataset E: BankComplaints Big Data File -- Chapter 14 : Installing R and RStudio -- Installing R -- Install R Software for a Mac System -- Installing RStudio -- Reference -- Chapter 15 : Installing the Entity Extraction Tool -- Downloading and Installing the Tool -- The NER Graphical User Interface -- Reference -- Chapter 16 : Installing the Topic Modeling Tool.
Installing and Using the Topic Modeling Tool -- Install the tool -- For Macs -- For Windows PCs -- UTF-8 caveat -- Setting up the workspace -- Workspace Directory -- Using the Tool -- Select metadata file -- Selecting the number of topics -- Analyzing the Output -- Multiple Passes for Optimization -- The Output Files -- Chapter 17 : Installing the Voyant Text Analysis Tool -- Install or Update Java -- Installation of Voyant Server -- The Voyant Server -- Downloading VoyantServer -- Running Voyant Server -- Controlling the Voyant Server -- Testing the Installation -- Reference -- INDEX.
Record Nr. UNINA-9910794555103321
Fortino Andres G.  
Dulles : , : Mercury Learning & Information, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Text analytics for business decisions : a case study approach / / Andres G. Fortino
Autore Fortino Andres G.
Pubbl/distr/stampa Dulles : , : Mercury Learning & Information, , [2021]
Descrizione fisica 1 online resource (332 pages)
Disciplina 650.02855369
Soggetto topico Business - Decision making - Computer programs
Text processing (Computer science)
Soggetto non controllato Business Communication
Computer Science
Data Analytics
Data Visualization
Excel
R
ISBN 1-68392-664-1
1-68392-665-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface -- On the Companion Files -- Acknowledgements -- Chapter 1 : Framing Analytical Questions -- Data is the New Oil -- The World of the Business Data Analyst -- How Does Data Analysis Relate to Decision Making? -- How Do We Frame Analytical Questions? -- What are the Characteristics of Well-framed Analytical Questions? -- Exercise 1.1 - Case Study Using Dataset K: Titanic Disaster -- What are Some Examples of Text-Based Analytical Questions? -- Additional Case Study Using Dataset J: Remote Learning Student Survey -- References -- Chapter 2 : Analytical Tool Sets -- Tool Sets for Text Analytics -- Excel -- Microsoft Word -- Adobe Acrobat -- SAS JMP -- R and RStudio -- Voyant -- Java -- Stanford Named Entity Recognizer (NER) -- Topic Modeling Tool -- References -- Chapter 3 : Text Data Sources and Formats -- Sources and Formats of Text Data -- Social Media Data -- Customer opinion data from commercial sites -- Email -- Documents -- Surveys -- Websites -- Chapter 4 : Preparing the Data File -- What is Data Shaping? -- The Flat File Format -- Shaping the Text Variable in a Table -- Bag-of-Words Representation -- Single Text Files -- Exercise 4.1 - Case Study Using Dataset L: Resumes -- Exercise 4.2 - Case Study Using Dataset D: Occupation Descriptions -- Additional Exercise 4.3 - Case Study Using Dataset I: NAICS Codes -- Aggregating Across Rows and Columns -- Exercise 4.4 - Case Study Using Dataset D: Occupation Descriptions -- Additional Advanced Exercise 4.5 - Case Study Using Dataset E: Large Data Files -- Additional Advanced Exercise 4.6 - Case Study Using Dataset F: The Federalist Papers -- References -- Chapter 5 : Word Frequency Analysis -- What is Word Frequency Analysis? -- How Does It Apply to Text Business Data Analysis? -- Exercise 5.1 - Case Study Using Dataset A: Training Survey.
Exercise 5.2 - Case Study Using Dataset D: Job Descriptions -- Exercise 5.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 5.4 - Case Study Using Dataset B: Consumer Complaints -- Chapter 6 : Keyword Analysis -- Exercise 6.1 - Case Study Using Dataset D: Resume and Job Description -- Exercise 6.2 - Case Study Using Dataset G: University Curriculum -- Exercise 6.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 6.4 - Case Study Using Dataset B: Customer Complaints -- Chapter 7 : Sentiment Analysis -- What is Sentiment Analysis? -- Exercise 7.1 - Case Study Using Dataset C: Product Reviews - Rubbermaid -- Exercise 7.2 - Case Study Using Dataset C: Product Reviews-Windex -- Exercise 7.3 - Case Study Using Dataset C: Product Reviews-Both Brands -- Chapter 8 : Visualizing Text Data -- What Is Data Visualization Used For? -- Exercise 8.1 - Case Study Using Dataset A: Training Survey -- Exercise 8.2 - Case Study Using Dataset B: Consumer Complaints -- Exercise 8.3 - Case Study Using Dataset C: Product Reviews -- Exercise 8.4 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 9 : Coding Text Data -- What is a Code? -- What are the Common Approaches to Coding Text Data? -- What is Inductive Coding? -- Exercise 9.1 - Case Study Using Dataset A: Training -- Exercise 9.2 - Case Study Using Dataset J: Remote Learning -- Exercise 9.3 - Case Study Using Dataset E: Large Text Files -- Affinity Diagram Coding -- Exercise 9.4 - Case Study Using Dataset M: Onboarding Brainstorming -- References -- Chapter 10 : Named Entity Recognition -- Named Entity Recognition -- What is a Named Entity? -- Common Approaches to Extracting Named Entities -- Classifiers - The Core NER Process -- What Does This Mean for Business? -- Exercise 10.1 - Using the Stanford NER -- Exercise 10.2 - Example Cases.
Exercise 10.2 - Case Study Using Dataset H: Corporate Financial Reports -- Additional Exercise 10.3 - Case Study Using Dataset L: Corporate Financial Reports -- Exercise 10.4 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 10.5 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 11 : Topic Recognition in Documents -- Information Retrieval -- Document Characterization -- Topic Recognition -- Exercises -- Exercise 11.1 - Case Study Using Dataset G: University Curricula -- Exercise 11.2 - Case Study Using Dataset E: Large Text Files -- Exercise 11.3 - Case Study Using Dataset E: Large Text Files -- Exercise 11.4 - Case Study Using Dataset E: Large Text Files -- Exercise 11.5 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.6 - Case Study Using Dataset P: Patents -- Additional Exercise 11.7 - Case Study Using Dataset F: Federalist Papers -- Additional Exercise 11.8 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.9- Case Study Using Dataset N: Sonnets -- References -- Chapter 12 : Text Similarity Scoring -- What is Text Similarity Scoring? -- Text Similarity Scoring Exercises -- Exercise 12.1 - Case Study Using Dataset D: Occupation Description -- Analysis using R -- Exercise 12.2 - Case D: Resume and Job Description -- Reference -- Chapter 13 : Analysis of Large Datasets by Sampling -- Using Sampling to Work with Large Data Files -- Exercise 13.1 - Big Data Analysis -- Additional Case Study Using Dataset E: BankComplaints Big Data File -- Chapter 14 : Installing R and RStudio -- Installing R -- Install R Software for a Mac System -- Installing RStudio -- Reference -- Chapter 15 : Installing the Entity Extraction Tool -- Downloading and Installing the Tool -- The NER Graphical User Interface -- Reference -- Chapter 16 : Installing the Topic Modeling Tool.
Installing and Using the Topic Modeling Tool -- Install the tool -- For Macs -- For Windows PCs -- UTF-8 caveat -- Setting up the workspace -- Workspace Directory -- Using the Tool -- Select metadata file -- Selecting the number of topics -- Analyzing the Output -- Multiple Passes for Optimization -- The Output Files -- Chapter 17 : Installing the Voyant Text Analysis Tool -- Install or Update Java -- Installation of Voyant Server -- The Voyant Server -- Downloading VoyantServer -- Running Voyant Server -- Controlling the Voyant Server -- Testing the Installation -- Reference -- INDEX.
Record Nr. UNINA-9910806102003321
Fortino Andres G.  
Dulles : , : Mercury Learning & Information, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui