Quaternion Algebras [[electronic resource]] |
Autore | Voight John (Mathematician) |
Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2021 |
Descrizione fisica | 1 online resource (877 p.) |
Collana | Graduate Texts in Mathematics |
Soggetto topico |
Algebra
Groups & group theory Number theory Quaternions |
Soggetto genere / forma | Llibres electrònics |
Soggetto non controllato |
Associative Rings and Algebras
Group Theory and Generalizations Number Theory Open Access Quaternions Quaternion algebras Quaternion orders Quaternion ideals Noncommutative algebra Quaternions and quadratic forms Ternary quadratic forms Simple algebras and involutions Lattices and integral quadratic forms Hurwitz order Quaternion algebras over local fields Quaternion algebras over global fields Adelic framework Idelic zeta functions Quaternions hyperbolic geometry Quaternions arithmetic groups Quaternions arithmetic geometry Supersingular elliptic curves Abelian surfaces with QM Algebra Groups & group theory |
ISBN | 3-030-56694-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996466394403316 |
Voight John (Mathematician) | ||
Cham, : Springer International Publishing AG, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Quaternion Algebras / John Voight |
Autore | Voight, John |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xxiii, 885 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
16-XX - Associative rings and algebras [MSC 2020] 11R52 - Quaternion and other division algebras: arithmetic, zeta functions [MSC 2020] 11F06 - Structure of modular groups and generalizations; arithmetic groups [MSC 2020] 11E12 - Quadratic forms over global rings and fields [MSC 2020] 20H10 - Fuchsian groups and their generalizations (group-theoretic aspects) [MSC 2020] 16U60 - Units, groups of units (associative rings and algebras) [MSC 2020] 16H05 - Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) [MSC 2020] 11S45 - Algebras and orders, and their zeta functions [MSC 2020] |
Soggetto non controllato |
Abelian surfaces
Adelic framework Hurwitz order Idelic zeta functions Lattices and integral quadratic forms Noncommutative algebra Quaternion algebras Quaternion algebras over global fields Quaternion algebras over local fields Quaternion ideals Quaternion orders Quaternions Quaternions and quadratic forms Quaternions arithmetic geometry Quaternions arithmetic groups Quaternions hyperbolic geometry Simple algebras and involutions Supersingular elliptic curves Ternary quadratic forms |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0275142 |
Voight, John | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Quaternion Algebras |
Autore | Voight John (Mathematician) |
Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2021 |
Descrizione fisica | 1 online resource (877 p.) |
Collana | Graduate Texts in Mathematics |
Soggetto topico |
Algebra
Groups & group theory Number theory Quaternions |
Soggetto genere / forma | Llibres electrònics |
Soggetto non controllato |
Associative Rings and Algebras
Group Theory and Generalizations Number Theory Open Access Quaternions Quaternion algebras Quaternion orders Quaternion ideals Noncommutative algebra Quaternions and quadratic forms Ternary quadratic forms Simple algebras and involutions Lattices and integral quadratic forms Hurwitz order Quaternion algebras over local fields Quaternion algebras over global fields Adelic framework Idelic zeta functions Quaternions hyperbolic geometry Quaternions arithmetic groups Quaternions arithmetic geometry Supersingular elliptic curves Abelian surfaces with QM Algebra Groups & group theory |
ISBN | 3-030-56694-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910488718903321 |
Voight John (Mathematician) | ||
Cham, : Springer International Publishing AG, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Quaternion Algebras / John Voight |
Autore | Voight, John |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xxiii, 885 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11E12 - Quadratic forms over global rings and fields [MSC 2020] 11F06 - Structure of modular groups and generalizations; arithmetic groups [MSC 2020] 11R52 - Quaternion and other division algebras: arithmetic, zeta functions [MSC 2020] 11S45 - Algebras and orders, and their zeta functions [MSC 2020] 16-XX - Associative rings and algebras [MSC 2020] 16H05 - Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) [MSC 2020] 16U60 - Units, groups of units (associative rings and algebras) [MSC 2020] 20H10 - Fuchsian groups and their generalizations (group-theoretic aspects) [MSC 2020] |
Soggetto non controllato |
Abelian surfaces
Adelic framework Hurwitz order Idelic zeta functions Lattices and integral quadratic forms Noncommutative algebra Quaternion algebras Quaternion algebras over global fields Quaternion algebras over local fields Quaternion ideals Quaternion orders Quaternions Quaternions and quadratic forms Quaternions arithmetic geometry Quaternions arithmetic groups Quaternions hyperbolic geometry Simple algebras and involutions Supersingular elliptic curves Ternary quadratic forms |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00275142 |
Voight, John | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|