Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno
| Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno |
| Autore | Konno, Hitoshi |
| Pubbl/distr/stampa | Singapore, : Springer, 2020 |
| Descrizione fisica | xiii, 131 p. : ill. ; 24 cm |
| Soggetto topico |
14-XX - Algebraic geometry [MSC 2020]
17-XX - Nonassociative rings and algebras [MSC 2020] 17B37 - Quantum groups (quantized enveloping algebras) and related deformations [MSC 2020] 20G42 - Quantum groups (quantized function algebras) and their representations [MSC 2020] 17B38 - Yang-Baxter equations and Rota-Baxter operators [MSC 2020] |
| Soggetto non controllato |
Elliptic quantum groups
Elliptic stable envelopes Quantum integrable systems Vertex operators q-KZ equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0233839 |
Konno, Hitoshi
|
||
| Singapore, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno
| Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno |
| Autore | Konno, Hitoshi |
| Pubbl/distr/stampa | Singapore, : Springer, 2020 |
| Descrizione fisica | xiii, 131 p. : ill. ; 24 cm |
| Soggetto topico |
14-XX - Algebraic geometry [MSC 2020]
17-XX - Nonassociative rings and algebras [MSC 2020] 17B37 - Quantum groups (quantized enveloping algebras) and related deformations [MSC 2020] 17B38 - Yang-Baxter equations and Rota-Baxter operators [MSC 2020] 20G42 - Quantum groups (quantized function algebras) and their representations [MSC 2020] |
| Soggetto non controllato |
Elliptic quantum groups
Elliptic stable envelopes Quantum integrable systems Vertex operators q-KZ equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00233839 |
Konno, Hitoshi
|
||
| Singapore, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Macdonald Polynomials : Commuting Family of q-Difference Operators and Their Joint Eigenfunctions / Masatoshi Noumi
| Macdonald Polynomials : Commuting Family of q-Difference Operators and Their Joint Eigenfunctions / Masatoshi Noumi |
| Autore | Noumi, Masatoshi |
| Pubbl/distr/stampa | Singapore, : Springer, 2023 |
| Descrizione fisica | viii, 132 p. : ill. ; 24 cm |
| Soggetto topico |
05E05 - Symmetric functions and generalizations [MSC 2020]
20C08 - Hecke algebras and their representations [MSC 2020] 33-XX - Special functions [MSC 2020] 33C45 - Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [MSC 2020] 33C67 - Hypergeometric functions associated with root systems [MSC 2020] 33C80 - Connections of hypergeometric functions with groups and algebras, and related topics [MSC 2020] 33D45 - Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) [MSC 2020] 33D50 - Orthogonal polynomials and functions in several variables expressible in terms of basic hypergeometric functions in one variable [MSC 2020] 33D52 - Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.) [MSC 2020] 33D67 - Basic hypergeometric functions associated with root systems [MSC 2020] 33D80 - Connections of basic hypergeometric functions with quantum groups, Chevalley groups, $p$-adic groups, Hecke algebras, and related topics [MSC 2020] |
| Soggetto non controllato |
Macdonald polynomials
Quantum integrable systems Symmetric functions q$-difference equations q-orthogonal polynomials |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00279243 |
Noumi, Masatoshi
|
||
| Singapore, : Springer, 2023 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak
| Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak |
| Autore | Blaszak, Maciej |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xiii, 460 p. : ill. ; 24 cm |
| Soggetto topico |
81-XX - Quantum theory [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020] 70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020] 53D50 - Geometric quantization [MSC 2020] 37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 81S08 - Canonical quantization [MSC 2020] 81Q80 - Special quantum systems, such as solvable systems [MSC 2020] |
| Soggetto non controllato |
Bosonic systems
Classical integrable systems Deformation quantization Geometric deformation Hamilton-Jacobi Theory Integrable Systems Lie derivative Linear tensor algebra Liouville integrable systems Quantum Trajectory Quantum integrability Quantum integrable systems Riemannian spaces Separability theory Staeckel systems Symplectic manifolds Tensor fields |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0218332 |
Blaszak, Maciej
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak
| Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak |
| Autore | Blaszak, Maciej |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xiii, 460 p. : ill. ; 24 cm |
| Soggetto topico |
37-XX - Dynamical systems and ergodic theory [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 53D50 - Geometric quantization [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020] 70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81Q80 - Special quantum systems, such as solvable systems [MSC 2020] 81S08 - Canonical quantization [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] |
| Soggetto non controllato |
Bosonic systems
Classical integrable systems Deformation quantization Geometric deformation Hamilton-Jacobi Theory Integrable Systems Lie derivatives Linear tensor algebra Liouville integrable systems Quantum Trajectory Quantum integrability Quantum integrable systems Riemannian spaces Separability theory Staeckel systems Symplectic manifolds Tensor fields |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00218332 |
Blaszak, Maciej
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||