top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno
Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno
Autore Konno, Hitoshi
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xiii, 131 p. : ill. ; 24 cm
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
17-XX - Nonassociative rings and algebras [MSC 2020]
17B37 - Quantum groups (quantized enveloping algebras) and related deformations [MSC 2020]
20G42 - Quantum groups (quantized function algebras) and their representations [MSC 2020]
17B38 - Yang-Baxter equations and Rota-Baxter operators [MSC 2020]
Soggetto non controllato Elliptic quantum groups
Elliptic stable envelopes
Quantum integrable systems
Vertex operators
q-KZ equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0233839
Konno, Hitoshi  
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno
Elliptic Quantum Groups : Representations and Related Geometry / Hitoshi Konno
Autore Konno, Hitoshi
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xiii, 131 p. : ill. ; 24 cm
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
17-XX - Nonassociative rings and algebras [MSC 2020]
17B37 - Quantum groups (quantized enveloping algebras) and related deformations [MSC 2020]
17B38 - Yang-Baxter equations and Rota-Baxter operators [MSC 2020]
20G42 - Quantum groups (quantized function algebras) and their representations [MSC 2020]
Soggetto non controllato Elliptic quantum groups
Elliptic stable envelopes
Quantum integrable systems
Vertex operators
q-KZ equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00233839
Konno, Hitoshi  
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Macdonald Polynomials : Commuting Family of q-Difference Operators and Their Joint Eigenfunctions / Masatoshi Noumi
Macdonald Polynomials : Commuting Family of q-Difference Operators and Their Joint Eigenfunctions / Masatoshi Noumi
Autore Noumi, Masatoshi
Pubbl/distr/stampa Singapore, : Springer, 2023
Descrizione fisica viii, 132 p. : ill. ; 24 cm
Soggetto topico 05E05 - Symmetric functions and generalizations [MSC 2020]
20C08 - Hecke algebras and their representations [MSC 2020]
33-XX - Special functions [MSC 2020]
33C45 - Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [MSC 2020]
33C67 - Hypergeometric functions associated with root systems [MSC 2020]
33C80 - Connections of hypergeometric functions with groups and algebras, and related topics [MSC 2020]
33D45 - Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) [MSC 2020]
33D50 - Orthogonal polynomials and functions in several variables expressible in terms of basic hypergeometric functions in one variable [MSC 2020]
33D52 - Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.) [MSC 2020]
33D67 - Basic hypergeometric functions associated with root systems [MSC 2020]
33D80 - Connections of basic hypergeometric functions with quantum groups, Chevalley groups, $p$-adic groups, Hecke algebras, and related topics [MSC 2020]
Soggetto non controllato Macdonald polynomials
Quantum integrable systems
Symmetric functions
q$-difference equations
q-orthogonal polynomials
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00279243
Noumi, Masatoshi  
Singapore, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak
Autore Blaszak, Maciej
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xiii, 460 p. : ill. ; 24 cm
Soggetto topico 81-XX - Quantum theory [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020]
70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020]
53D50 - Geometric quantization [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020]
70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020]
81S10 - Geometry and quantization, symplectic methods [MSC 2020]
53D55 - Deformation quantization, star products [MSC 2020]
81S08 - Canonical quantization [MSC 2020]
81Q80 - Special quantum systems, such as solvable systems [MSC 2020]
Soggetto non controllato Bosonic systems
Classical integrable systems
Deformation quantization
Geometric deformation
Hamilton-Jacobi Theory
Integrable Systems
Lie derivative
Linear tensor algebra
Liouville integrable systems
Quantum Trajectory
Quantum integrability
Quantum integrable systems
Riemannian spaces
Separability theory
Staeckel systems
Symplectic manifolds
Tensor fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0218332
Blaszak, Maciej  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak
Autore Blaszak, Maciej
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xiii, 460 p. : ill. ; 24 cm
Soggetto topico 37-XX - Dynamical systems and ergodic theory [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020]
53D50 - Geometric quantization [MSC 2020]
53D55 - Deformation quantization, star products [MSC 2020]
70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020]
70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020]
81-XX - Quantum theory [MSC 2020]
81Q80 - Special quantum systems, such as solvable systems [MSC 2020]
81S08 - Canonical quantization [MSC 2020]
81S10 - Geometry and quantization, symplectic methods [MSC 2020]
Soggetto non controllato Bosonic systems
Classical integrable systems
Deformation quantization
Geometric deformation
Hamilton-Jacobi Theory
Integrable Systems
Lie derivatives
Linear tensor algebra
Liouville integrable systems
Quantum Trajectory
Quantum integrability
Quantum integrable systems
Riemannian spaces
Separability theory
Staeckel systems
Symplectic manifolds
Tensor fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00218332
Blaszak, Maciej  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui