top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Backward Stochastic Differential Equations : From Linear to Fully Nonlinear Theory / Jianfeng Zhang
Backward Stochastic Differential Equations : From Linear to Fully Nonlinear Theory / Jianfeng Zhang
Autore Zhang, Jianfeng
Pubbl/distr/stampa New York, : Springer, 2017
Descrizione fisica xv, 386 p. ; 24 cm
Soggetto topico 60H10 - Stochastic ordinary differential equations [MSC 2020]
60H30 - Applications of stochastic analysis (to PDEs, etc.) [MSC 2020]
Soggetto non controllato Backward Stochastic Differential Equations
Economic Theory, Quantitative Economics, Mathematical Methods
Game Theory, Economics Social and Behavioral Science
Mathematical Finance
Nonlinear expectations
Numerical Analysis
Parabolic partial differential equations
Partial differential equations
Path Dependent Partial Differential Equations
Probability Theory and Stochastic Processes
Quantitative Finance
Second Order Backward Stochastic Differential Equations
Stochastic Controls
Stochastic differential equations
Viscosity solutions
Weak Formulation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0123804
Zhang, Jianfeng  
New York, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Backward Stochastic Differential Equations : From Linear to Fully Nonlinear Theory / Jianfeng Zhang
Backward Stochastic Differential Equations : From Linear to Fully Nonlinear Theory / Jianfeng Zhang
Autore Zhang, Jianfeng
Pubbl/distr/stampa New York, : Springer, 2017
Descrizione fisica xv, 386 p. ; 24 cm
Soggetto topico 60H10 - Stochastic ordinary differential equations [MSC 2020]
60H30 - Applications of stochastic analysis (to PDEs, etc.) [MSC 2020]
Soggetto non controllato Backward Stochastic Differential Equations
Economic Theory, Quantitative Economics, Mathematical Methods
Game Theory, Economics Social and Behavioral Science
Mathematical Finance
Nonlinear expectations
Numerical Analysis
Parabolic partial differential equations
Partial Differential Equations
Path Dependent Partial Differential Equations
Probability Theory and Stochastic Processes
Quantitative Finance
Second Order Backward Stochastic Differential Equations
Stochastic Controls
Stochastic differential equations
Viscosity solutions
Weak Formulation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00123804
Zhang, Jianfeng  
New York, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Elliptic Extensions in Statistical and Stochastic Systems / Makoto Katori
Elliptic Extensions in Statistical and Stochastic Systems / Makoto Katori
Autore Katori, Makoto
Pubbl/distr/stampa Singapore, : Springer, 2023
Descrizione fisica xiv, 125 p. : ill. ; 24 cm
Soggetto topico 33E05 - Elliptic functions and integrals [MSC 2020]
44-XX - Integral transforms, operational calculus [MSC 2020]
44A05 - General integral transforms [MSC 2020]
44A10 - Laplace transform [MSC 2020]
44A20 - Integral transforms of special functions [MSC 2020]
44A30 - Multiple integral transforms [MSC 2020]
44A45 - Classical operational calculus [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
82C22 - Interacting particle systems in time-dependent statistical mechanics [MSC 2020]
Soggetto non controllato Brownian motion and lattice path models
Gaussian fields and point processes
Probability Theory and Stochastic Processes
Statistical physics and random matrix theory
q-extensions and elliptic extensions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00279189
Katori, Makoto  
Singapore, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
An Invitation to Statistics in Wasserstein Space [[electronic resource] /] / by Victor M. Panaretos, Yoav Zemel
An Invitation to Statistics in Wasserstein Space [[electronic resource] /] / by Victor M. Panaretos, Yoav Zemel
Autore Panaretos Victor M
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, : Springer Nature, 2020
Descrizione fisica 1 online resource (XIII, 147 p. 30 illus., 24 illus. in color.)
Disciplina 519.2
Collana SpringerBriefs in Probability and Mathematical Statistics
Soggetto topico Probabilities
Probability Theory and Stochastic Processes
Soggetto non controllato Probability Theory and Stochastic Processes
Optimal Transportation
Monge-Kantorovich Problem
Barycenter
Multimarginal Transport
Functional Data Analysis
Point Processes
Random Measures
Manifold Statistics
Open Access
Geometrical statistics
Wasserstein metric
Fréchet mean
Procrustes analysis
Phase variation
Gradient descent
Probability & statistics
Stochastics
ISBN 3-030-38438-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Optimal transportation -- The Wasserstein space -- Fréchet means in the Wasserstein space -- Phase variation and Fréchet means -- Construction of Fréchet means and multicouplings.
Record Nr. UNISA-996418267003316
Panaretos Victor M  
Cham, : Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Matrix-exponential distributions in applied probability / Mogens Bladt, Bo Friis Nielsen
Matrix-exponential distributions in applied probability / Mogens Bladt, Bo Friis Nielsen
Autore Bladt, Mogens
Pubbl/distr/stampa New York, : Springer, 2017
Descrizione fisica xvii, 736 p. : ill. ; 24 cm
Altri autori (Persone) Nielsen, Bo Friis
Soggetto topico 46-XX - Functional analysis [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
Soggetto non controllato Applied probability
Ladder processes
Management Science
Markov Processes
Matrix exponential distributions
Numerical methods
Operations Research
Phase-type distributions
Probability Theory and Stochastic Processes
Random Walks
Regenerative methods
Renewal theory
Stochastic modeling
Uncertainty Quantification
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0123376
Bladt, Mogens  
New York, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Matrix-exponential distributions in applied probability / Mogens Bladt, Bo Friis Nielsen
Matrix-exponential distributions in applied probability / Mogens Bladt, Bo Friis Nielsen
Autore Bladt, Mogens
Pubbl/distr/stampa New York, : Springer, 2017
Descrizione fisica xvii, 736 p. : ill. ; 24 cm
Altri autori (Persone) Nielsen, Bo Friis
Soggetto topico 46-XX - Functional analysis [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020]
Soggetto non controllato Applied probability
Ladder processes
Management Science
Markov Processes
Matrix exponential distributions
Numerical methods
Operations Research
Phase-type distributions
Probability Theory and Stochastic Processes
Random Walks
Regenerative methods
Renewal theory
Stochastic modeling
Uncertainty Quantification
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00123376
Bladt, Mogens  
New York, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course
Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course
Autore Walrand Jean
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (390 p.)
Soggetto topico Maths for computer scientists
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Soggetto non controllato Probability and Statistics in Computer Science
Communications Engineering, Networks
Mathematical and Computational Engineering
Probability Theory and Stochastic Processes
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Mathematical and Computational Engineering Applications
Probability Theory
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Applied probability
Hypothesis testing
Detection theory
Expectation maximization
Stochastic dynamic programming
Machine learning
Stochastic gradient descent
Deep neural networks
Matrix completion
Linear and polynomial regression
Open Access
Maths for computer scientists
Mathematical & statistical software
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Stochastics
ISBN 3-030-49995-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464521903316
Walrand Jean  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Probability in Electrical Engineering and Computer Science : An Application-Driven Course
Probability in Electrical Engineering and Computer Science : An Application-Driven Course
Autore Walrand Jean
Edizione [1st ed.]
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (390 p.)
Soggetto topico Maths for computer scientists
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Soggetto non controllato Probability and Statistics in Computer Science
Communications Engineering, Networks
Mathematical and Computational Engineering
Probability Theory and Stochastic Processes
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Mathematical and Computational Engineering Applications
Probability Theory
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Applied probability
Hypothesis testing
Detection theory
Expectation maximization
Stochastic dynamic programming
Machine learning
Stochastic gradient descent
Deep neural networks
Matrix completion
Linear and polynomial regression
Open Access
Maths for computer scientists
Mathematical & statistical software
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Stochastics
ISBN 3-030-49995-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Introduction -- About This Second Edition -- Contents -- 1 PageRank: A -- 1.1 Model -- 1.2 Markov Chain -- 1.2.1 General Definition -- 1.2.2 Distribution After n Steps and Invariant Distribution -- 1.3 Analysis -- 1.3.1 Irreducibility and Aperiodicity -- 1.3.2 Big Theorem -- 1.3.3 Long-Term Fraction of Time -- 1.4 Illustrations -- 1.5 Hitting Time -- 1.5.1 Mean Hitting Time -- 1.5.2 Probability of Hitting a State Before Another -- 1.5.3 FSE for Markov Chain -- 1.6 Summary -- 1.6.1 Key Equations and Formulas -- 1.7 References -- 1.8 Problems -- 2 PageRank: B -- 2.1 Sample Space -- 2.2 Laws of Large Numbers for Coin Flips -- 2.2.1 Convergence in Probability -- 2.2.2 Almost Sure Convergence -- 2.3 Laws of Large Numbers for i.i.d. RVs -- 2.3.1 Weak Law of Large Numbers -- 2.3.2 Strong Law of Large Numbers -- 2.4 Law of Large Numbers for Markov Chains -- 2.5 Proof of Big Theorem -- 2.5.1 Proof of Theorem 1.1 (a) -- 2.5.2 Proof of Theorem 1.1 (b) -- 2.5.3 Periodicity -- 2.6 Summary -- 2.6.1 Key Equations and Formulas -- 2.7 References -- 2.8 Problems -- 3 Multiplexing: A -- 3.1 Sharing Links -- 3.2 Gaussian Random Variable and CLT -- 3.2.1 Binomial and Gaussian -- 3.2.2 Multiplexing and Gaussian -- 3.2.3 Confidence Intervals -- 3.3 Buffers -- 3.3.1 Markov Chain Model of Buffer -- 3.3.2 Invariant Distribution -- 3.3.3 Average Delay -- 3.3.4 A Note About Arrivals -- 3.3.5 Little's Law -- 3.4 Multiple Access -- 3.5 Summary -- 3.5.1 Key Equations and Formulas -- 3.6 References -- 3.7 Problems -- 4 Multiplexing: B -- 4.1 Characteristic Functions -- 4.2 Proof of CLT (Sketch) -- 4.3 Moments of N(0, 1) -- 4.4 Sum of Squares of 2 i.i.d. N(0, 1) -- 4.5 Two Applications of Characteristic Functions -- 4.5.1 Poisson as a Limit of Binomial -- 4.5.2 Exponential as Limit of Geometric -- 4.6 Error Function.
4.7 Adaptive Multiple Access -- 4.8 Summary -- 4.8.1 Key Equations and Formulas -- 4.9 References -- 4.10 Problems -- 5 Networks: A -- 5.1 Spreading Rumors -- 5.2 Cascades -- 5.3 Seeding the Market -- 5.4 Manufacturing of Consent -- 5.5 Polarization -- 5.6 M/M/1 Queue -- 5.7 Network of Queues -- 5.8 Optimizing Capacity -- 5.9 Internet and Network of Queues -- 5.10 Product-Form Networks -- 5.10.1 Example -- 5.11 References -- 5.12 Problems -- 6 Networks-B -- 6.1 Social Networks -- 6.2 Continuous-Time Markov Chains -- 6.2.1 Two-State Markov Chain -- 6.2.2 Three-State Markov Chain -- 6.2.3 General Case -- 6.2.4 Uniformization -- 6.2.5 Time Reversal -- 6.3 Product-Form Networks -- 6.4 Proof of Theorem 5.7 -- 6.5 References -- 7 Digital Link-A -- 7.1 Digital Link -- 7.2 Detection and Bayes' Rule -- 7.2.1 Bayes' Rule -- 7.2.2 Circumstances vs. Causes -- 7.2.3 MAP and MLE -- Example: Ice Cream and Sunburn -- 7.2.4 Binary Symmetric Channel -- 7.3 Huffman Codes -- 7.4 Gaussian Channel -- Simulation -- 7.4.1 BPSK -- 7.5 Multidimensional Gaussian Channel -- 7.5.1 MLE in Multidimensional Case -- 7.6 Hypothesis Testing -- 7.6.1 Formulation -- 7.6.2 Solution -- 7.6.3 Examples -- Gaussian Channel -- Mean of Exponential RVs -- Bias of a Coin -- Discrete Observations -- 7.7 Summary -- 7.7.1 Key Equations and Formulas -- 7.8 References -- 7.9 Problems -- 8 Digital Link-B -- 8.1 Proof of Optimality of the Huffman Code -- 8.2 Proof of Neyman-Pearson Theorem 7.4 -- 8.3 Jointly Gaussian Random Variables -- 8.3.1 Density of Jointly Gaussian Random Variables -- 8.4 Elementary Statistics -- 8.4.1 Zero-Mean? -- 8.4.2 Unknown Variance -- 8.4.3 Difference of Means -- 8.4.4 Mean in Hyperplane? -- 8.4.5 ANOVA -- 8.5 LDPC Codes -- 8.6 Summary -- 8.6.1 Key Equations and Formulas -- 8.7 References -- 8.8 Problems -- 9 Tracking-A -- 9.1 Examples -- 9.2 Estimation Problem.
9.3 Linear Least Squares Estimates -- 9.3.1 Projection -- 9.4 Linear Regression -- 9.5 A Note on Overfitting -- 9.6 MMSE -- 9.6.1 MMSE for Jointly Gaussian -- 9.7 Vector Case -- 9.8 Kalman Filter -- 9.8.1 The Filter -- 9.8.2 Examples -- Random Walk -- Random Walk with Unknown Drift -- Random Walk with Changing Drift -- Falling Object -- 9.9 Summary -- 9.9.1 Key Equations and Formulas -- 9.10 References -- 9.11 Problems -- 10 Tracking: B -- 10.1 Updating LLSE -- 10.2 Derivation of Kalman Filter -- 10.3 Properties of Kalman Filter -- 10.3.1 Observability -- 10.3.2 Reachability -- 10.4 Extended Kalman Filter -- 10.4.1 Examples -- 10.5 Summary -- 10.5.1 Key Equations and Formulas -- 10.6 References -- 11 Speech Recognition: A -- 11.1 Learning: Concepts and Examples -- 11.2 Hidden Markov Chain -- 11.3 Expectation Maximization and Clustering -- 11.3.1 A Simple Clustering Problem -- 11.3.2 A Second Look -- 11.4 Learning: Hidden Markov Chain -- 11.4.1 HEM -- 11.4.2 Training the Viterbi Algorithm -- 11.5 Summary -- 11.5.1 Key Equations and Formulas -- 11.6 References -- 11.7 Problems -- 12 Speech Recognition: B -- 12.1 Online Linear Regression -- 12.2 Theory of Stochastic Gradient Projection -- 12.2.1 Gradient Projection -- 12.2.2 Stochastic Gradient Projection -- 12.2.3 Martingale Convergence -- 12.3 Big Data -- 12.3.1 Relevant Data -- 12.3.2 Compressed Sensing -- 12.3.3 Recommendation Systems -- 12.4 Deep Neural Networks -- 12.4.1 Calculating Derivatives -- 12.5 Summary -- 12.5.1 Key Equations and Formulas -- 12.6 References -- 12.7 Problems -- 13 Route Planning: A -- 13.1 Model -- 13.2 Formulation 1: Pre-planning -- 13.3 Formulation 2: Adapting -- 13.4 Markov Decision Problem -- 13.4.1 Examples -- 13.5 Infinite Horizon -- 13.6 Summary -- 13.6.1 Key Equations and Formulas -- 13.7 References -- 13.8 Problems -- 14 Route Planning: B -- 14.1 LQG Control.
14.1.1 Letting N →∞ -- 14.2 LQG with Noisy Observations -- 14.2.1 Letting N →∞ -- 14.3 Partially Observed MDP -- 14.3.1 Example: Searching for Your Keys -- 14.4 Summary -- 14.4.1 Key Equations and Formulas -- 14.5 References -- 14.6 Problems -- 15 Perspective and Complements -- 15.1 Inference -- 15.2 Sufficient Statistic -- 15.2.1 Interpretation -- 15.3 Infinite Markov Chains -- 15.3.1 Lyapunov-Foster Criterion -- 15.4 Poisson Process -- 15.4.1 Definition -- 15.4.2 Independent Increments -- 15.4.3 Number of Jumps -- 15.5 Boosting -- 15.6 Multi-Armed Bandits -- 15.7 Capacity of BSC -- 15.8 Bounds on Probabilities -- 15.8.1 Applying the Bounds to Multiplexing -- 15.9 Martingales -- 15.9.1 Definitions -- 15.9.2 Examples -- 15.9.3 Law of Large Numbers -- 15.9.4 Wald's Equality -- 15.10 Summary -- 15.10.1 Key Equations and Formulas -- 15.11 References -- 15.12 Problems -- Correction to: Probability in Electrical Engineering and Computer Science -- Correction to: Probability in Electrical Engineering and Computer Science (Funding Information) -- A Elementary Probability -- A.1 Symmetry -- A.2 Conditioning -- A.3 Common Confusion -- A.4 Independence -- A.5 Expectation -- A.6 Variance -- A.7 Inequalities -- A.8 Law of Large Numbers -- A.9 Covariance and Regression -- A.10 Why Do We Need a More Sophisticated Formalism? -- A.11 References -- A.12 Solved Problems -- B Basic Probability -- B.1 General Framework -- B.1.1 Probability Space -- B.1.2 Borel-Cantelli Theorem -- B.1.3 Independence -- B.1.4 Converse of Borel-Cantelli Theorem -- B.1.5 Conditional Probability -- B.1.6 Random Variable -- B.2 Discrete Random Variable -- B.2.1 Definition -- B.2.2 Expectation -- B.2.3 Function of a RV -- B.2.4 Nonnegative RV -- B.2.5 Linearity of Expectation -- B.2.6 Monotonicity of Expectation -- B.2.7 Variance, Standard Deviation.
B.2.8 Important Discrete Random Variables -- B.3 Multiple Discrete Random Variables -- B.3.1 Joint Distribution -- B.3.2 Independence -- B.3.3 Expectation of Function of Multiple RVs -- B.3.4 Covariance -- B.3.5 Conditional Expectation -- B.3.6 Conditional Expectation of a Function -- B.4 General Random Variables -- B.4.1 Definitions -- B.4.2 Examples -- B.4.3 Expectation -- B.4.4 Continuity of Expectation -- B.5 Multiple Random Variables -- B.5.1 Random Vector -- B.5.2 Minimum and Maximum of Independent RVs -- B.5.3 Sum of Independent Random Variables -- B.6 Random Vectors -- B.6.1 Orthogonality and Projection -- B.7 Density of a Function of Random Variables -- B.7.1 Linear Transformations -- B.7.2 Nonlinear Transformations -- B.8 References -- B.9 Problems -- References -- Index.
Record Nr. UNINA-9910488709003321
Walrand Jean  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sample path analysis and distributions of boundary crossing times / Shelemyahu Zacks
Sample path analysis and distributions of boundary crossing times / Shelemyahu Zacks
Autore Zacks, Shelemyahu
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica XIII, 135 p. : ill. ; 24 cm
Soggetto topico 60-XX - Probability theory and stochastic processes [MSC 2020]
60K40 - Other physical applications of random processes [MSC 2020]
60K20 - Applications of Markov renewal processes (reliability, queueing networks, etc.) [MSC 2020]
60K15 - Markov renewal processes, semi-Markov processes [MSC 2020]
Soggetto non controllato Applications in Queueing
Brownian Motions
Compound Poisson Processes
Compound Renewal Processes
Distributions of First Crossing Times
Inventory and Sequential Analysis
Management Science
Operations Research
Poisson process
Probability Theory and Stochastic Processes
Renewal processes
Telegraph Processes
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0114084
Zacks, Shelemyahu  
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Sample path analysis and distributions of boundary crossing times / Shelemyahu Zacks
Sample path analysis and distributions of boundary crossing times / Shelemyahu Zacks
Autore Zacks, Shelemyahu
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica XIII, 135 p. : ill. ; 24 cm
Soggetto topico 60-XX - Probability theory and stochastic processes [MSC 2020]
60K15 - Markov renewal processes, semi-Markov processes [MSC 2020]
60K20 - Applications of Markov renewal processes (reliability, queueing networks, etc.) [MSC 2020]
60K40 - Other physical applications of random processes [MSC 2020]
Soggetto non controllato Applications in Queueing
Brownian Motions
Compound Poisson Processes
Compound Renewal Processes
Distributions of First Crossing Times
Inventory and Sequential Analysis
Management Science
Operations Research
Poisson process
Probability Theory and Stochastic Processes
Renewal processes
Telegraph Processes
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00114084
Zacks, Shelemyahu  
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui