top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
An Invitation to Statistics in Wasserstein Space [[electronic resource] /] / by Victor M. Panaretos, Yoav Zemel
An Invitation to Statistics in Wasserstein Space [[electronic resource] /] / by Victor M. Panaretos, Yoav Zemel
Autore Panaretos Victor M
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, : Springer Nature, 2020
Descrizione fisica 1 online resource (XIII, 147 p. 30 illus., 24 illus. in color.)
Disciplina 519.2
Collana SpringerBriefs in Probability and Mathematical Statistics
Soggetto topico Probabilities
Probability Theory and Stochastic Processes
Soggetto non controllato Probability Theory and Stochastic Processes
Optimal Transportation
Monge-Kantorovich Problem
Barycenter
Multimarginal Transport
Functional Data Analysis
Point Processes
Random Measures
Manifold Statistics
Open Access
Geometrical statistics
Wasserstein metric
Fréchet mean
Procrustes analysis
Phase variation
Gradient descent
Probability & statistics
Stochastics
ISBN 3-030-38438-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Optimal transportation -- The Wasserstein space -- Fréchet means in the Wasserstein space -- Phase variation and Fréchet means -- Construction of Fréchet means and multicouplings.
Record Nr. UNISA-996418267003316
Panaretos Victor M  
Cham, : Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
An Invitation to Statistics in Wasserstein Space / / by Victor M. Panaretos, Yoav Zemel
An Invitation to Statistics in Wasserstein Space / / by Victor M. Panaretos, Yoav Zemel
Autore Panaretos Victor M
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, : Springer Nature, 2020
Descrizione fisica 1 online resource (XIII, 147 p. 30 illus., 24 illus. in color.)
Disciplina 519.2
519.5
Collana SpringerBriefs in Probability and Mathematical Statistics
Soggetto topico Probabilities
Probability Theory and Stochastic Processes
Soggetto non controllato Probability Theory and Stochastic Processes
Optimal Transportation
Monge-Kantorovich Problem
Barycenter
Multimarginal Transport
Functional Data Analysis
Point Processes
Random Measures
Manifold Statistics
Open Access
Geometrical statistics
Wasserstein metric
Fréchet mean
Procrustes analysis
Phase variation
Gradient descent
Probability & statistics
Stochastics
ISBN 3-030-38438-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Optimal transportation -- The Wasserstein space -- Fréchet means in the Wasserstein space -- Phase variation and Fréchet means -- Construction of Fréchet means and multicouplings.
Record Nr. UNINA-9910404119803321
Panaretos Victor M  
Cham, : Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multilevel Modelling for Public Health and Health Services Research : Health in Context / / by Alastair H. Leyland, Peter P. Groenewegen
Multilevel Modelling for Public Health and Health Services Research : Health in Context / / by Alastair H. Leyland, Peter P. Groenewegen
Autore Leyland Alastair H
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (XVII, 288 p. 143 illus., 103 illus. in color.)
Disciplina 613
614
614.0727
Soggetto topico Public health
Medical care
Sociology—Research
Epidemiology
Statistics 
Public Health
Health Services Research
Research Methodology
Statistics for Life Sciences, Medicine, Health Sciences
Soggetto non controllato Public Health
Health Services Research
Research Methodology
Epidemiology
Statistics for Life Sciences, Medicine, Health Sciences
Health Sciences
Sociological Methods
Statistics in Life Sciences, Medicine, Health Sciences
MLwiN
epidemiological methods
health services research methodology
multilevel analysis
multilevel modelling
statistical methods for public health research
Open Access
Public health & preventive medicine
Health systems & services
Social research & statistics
Epidemiology & medical statistics
Probability & statistics
ISBN 3-030-34801-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Theoretical, conceptual and methodological background -- Chapter 1: Introduction -- Chapter 2: Health in context -- Chapter 3: What is multilevel modelling? -- Chapter 4: Multilevel data structures -- Part II: Statistical background -- Chapter 5: Graphs and equations -- Chapter 6: Apportioning variation in multilevel models -- Part III: The modelling process and presentation of research -- Chapter 7: Context, composition and how their influences vary -- Chapter 8: Ecometrics: Using MLA to construct contextual variables from individual data -- Chapter 9: Modelling strategies -- Chapter 10: Reading and writing -- Part IV: Tutorials with example datasets -- Chapter 11: Multilevel linear regression using MLwiN: Mortality in England and Wales, 1979-1992 -- Chapter 12. Multilevel logistic regression using MLwiN: Referrals to physiotherapy -- Chapter 13. Untangling context and composition using MLwiN: Incidence of cardiovascular disease in small areas in Scotland.
Record Nr. UNINA-9910380727303321
Leyland Alastair H  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course
Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course
Autore Walrand Jean
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (390 p.)
Soggetto topico Maths for computer scientists
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Soggetto non controllato Probability and Statistics in Computer Science
Communications Engineering, Networks
Mathematical and Computational Engineering
Probability Theory and Stochastic Processes
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Mathematical and Computational Engineering Applications
Probability Theory
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Applied probability
Hypothesis testing
Detection theory
Expectation maximization
Stochastic dynamic programming
Machine learning
Stochastic gradient descent
Deep neural networks
Matrix completion
Linear and polynomial regression
Open Access
Maths for computer scientists
Mathematical & statistical software
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Stochastics
ISBN 3-030-49995-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464521903316
Walrand Jean  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Probability in Electrical Engineering and Computer Science : An Application-Driven Course
Probability in Electrical Engineering and Computer Science : An Application-Driven Course
Autore Walrand Jean
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (390 p.)
Soggetto topico Maths for computer scientists
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Soggetto non controllato Probability and Statistics in Computer Science
Communications Engineering, Networks
Mathematical and Computational Engineering
Probability Theory and Stochastic Processes
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Mathematical and Computational Engineering Applications
Probability Theory
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Applied probability
Hypothesis testing
Detection theory
Expectation maximization
Stochastic dynamic programming
Machine learning
Stochastic gradient descent
Deep neural networks
Matrix completion
Linear and polynomial regression
Open Access
Maths for computer scientists
Mathematical & statistical software
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Stochastics
ISBN 3-030-49995-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910488709003321
Walrand Jean  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui