Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910786510103321 |
Rubin Karl
![]() |
||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910816804403321 |
Rubin Karl
![]() |
||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Knot Groups. Annals of Mathematics Studies. (AM-56), Volume 56 / / Lee Paul Neuwirth |
Autore | Neuwirth Lee Paul |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (120 pages) : illustrations |
Disciplina | 513.8 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Knot theory |
Soggetto non controllato |
Abelian group
Alexander duality Alexander polynomial Algebraic theory Algorithm Analytic continuation Associative property Automorphism Axiom Bijection Binary relation Calculation Central series Characterization (mathematics) Cobordism Coefficient Cohomology Combinatorics Commutator subgroup Complete theory Computation Conjugacy class Conjugate element (field theory) Connected space Connectedness Coprime integers Coset Covering space Curve Cyclic group Dehn's lemma Determinant Diagonalization Diagram (category theory) Dimension Direct product Equivalence class Equivalence relation Euclidean space Euler characteristic Existential quantification Fiber bundle Finite group Finitely generated module Frattini subgroup Free abelian group Fundamental group Geometry Group ring Group theory Group with operators Hausdorff space Homeomorphism Homology (mathematics) Homomorphism Homotopy group Homotopy Identity matrix Inner automorphism Interior (topology) Intersection number (graph theory) Knot group Knot theory Linear combination Manifold Mathematical induction Monomorphism Morphism Morse theory Natural transformation Non-abelian group Normal subgroup Orientability Permutation Polynomial Presentation of a group Principal ideal domain Principal ideal Root of unity Semigroup Simplicial complex Simply connected space Special case Square matrix Subgroup Subset Summation Theorem Three-dimensional space (mathematics) Topological space Topology Torus knot Transfinite number Trefoil knot Trichotomy (mathematics) Trivial group Triviality (mathematics) Two-dimensional space Unit vector Wreath product |
ISBN | 1-4008-8203-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- CHAPTER I. INTRODUCTION -- CHAPTER II. NOTATION AND CONVENTIONS -- CHAPTER III. COMBINATORIAL COVERING SPACE THEORY FOR 3-MANIFOLDS -- CHAPTER IV. THE COMMUTATOR SUBGROUP AND THE ALEXANDER MATRIX -- CHAPTER V. SUBGROUPS -- CHAPTER VI. REPRESENTATIONS -- CHAPTER VII. AUTOMORPHISMS -- CHAPTER VIII. A GROUP OF GROUPS -- CHAPTER IX. THE CHARACTERIZATION PROBLEM -- CHAPTER X. THE STRENGTH OP THE GROUP -- CHAPTER XI. PROBLEMS -- APPENDIX BY S. Eileriberg -- REFERENCES -- INDEX |
Record Nr. | UNINA-9910154747703321 |
Neuwirth Lee Paul
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Lectures on resolution of singularities [[electronic resource] /] / János Kollár |
Autore | Kollár János |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2007 |
Descrizione fisica | 1 online resource (215 p.) |
Disciplina | 516.3/5 |
Collana | Annals of mathematics studies |
Soggetto topico | Singularities (Mathematics) |
Soggetto non controllato |
Adjunction formula
Algebraic closure Algebraic geometry Algebraic space Algebraic surface Algebraic variety Approximation Asymptotic analysis Automorphism Bernhard Riemann Big O notation Birational geometry C0 Canonical singularity Codimension Cohomology Commutative algebra Complex analysis Complex manifold Computability Continuous function Coordinate system Diagram (category theory) Differential geometry of surfaces Dimension Divisor Du Val singularity Dual graph Embedding Equation Equivalence relation Euclidean algorithm Factorization Functor General position Generic point Geometric genus Geometry Hyperplane Hypersurface Integral domain Intersection (set theory) Intersection number (graph theory) Intersection theory Irreducible component Isolated singularity Laurent series Line bundle Linear space (geometry) Linear subspace Mathematical induction Mathematics Maximal ideal Morphism Newton polygon Noetherian ring Noetherian Open problem Open set P-adic number Pairwise Parametric equation Partial derivative Plane curve Polynomial Power series Principal ideal Principalization (algebra) Projective space Projective variety Proper morphism Puiseux series Quasi-projective variety Rational function Regular local ring Resolution of singularities Riemann surface Ring theory Ruler Scientific notation Sheaf (mathematics) Singularity theory Smooth morphism Smoothness Special case Subring Summation Surjective function Tangent cone Tangent space Tangent Taylor series Theorem Topology Toric variety Transversal (geometry) Variable (mathematics) Weierstrass preparation theorem Weierstrass theorem Zero set |
ISBN |
1-282-15774-4
9786612157745 1-4008-2780-9 |
Classificazione | SK 240 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 1. Resolution for Curves -- Chapter 2. Resolution for Surfaces -- Chapter 3. Strong Resolution in Characteristic Zero -- Bibliography -- Index |
Record Nr. | UNINA-9910778222903321 |
Kollár János
![]() |
||
Princeton, N.J., : Princeton University Press, 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Profinite Groups, Arithmetic, and Geometry. (AM-67), Volume 67 / / Stephen S. Shatz |
Autore | Shatz Stephen S. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (265 pages) |
Disciplina | 512/.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Homology theory
Finite groups Algebraic number theory |
Soggetto non controllato |
Abelian group
Alexander Grothendieck Algebraic closure Algebraic extension Algebraic geometry Algebraic number field Brauer group Category of abelian groups Category of sets Characterization (mathematics) Class field theory Cohomological dimension Cohomology Cokernel Commutative diagram Composition series Computation Connected component (graph theory) Coset Cup product Dedekind domain Degeneracy (mathematics) Diagram (category theory) Dimension (vector space) Diophantine geometry Discrete group Equivalence of categories Exact sequence Existential quantification Explicit formula Exponential function Family of sets Field extension Finite group Fundamental class G-module Galois cohomology Galois extension Galois group Galois module Galois theory General topology Geometry Grothendieck topology Group cohomology Group extension Group scheme Group theory Hilbert symbol Hopf algebra Ideal (ring theory) Inequality (mathematics) Injective sheaf Inner automorphism Inverse limit Kummer theory Lie algebra Linear independence Local field Mathematical induction Mathematician Mathematics Module (mathematics) Morphism Natural topology Neighbourhood (mathematics) Normal extension Normal subgroup Number theory P-adic number P-group Polynomial Pontryagin duality Power series Prime number Principal ideal Profinite group Quadratic reciprocity Quotient group Ring of integers Sheaf (mathematics) Special case Subcategory Subgroup Supernatural number Sylow theorems Tangent space Theorem Topological group Topological property Topological ring Topological space Topology Torsion group Torsion subgroup Transcendence degree Triviality (mathematics) Unique factorization domain Variable (mathematics) Vector space |
ISBN | 1-4008-8185-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- CHAPTER I. PROFINITE GROUPS -- CHAPTER II. COHOMOLOGY OF PROFINITE GROUPS -- CHAPTER III. COHOMOLOGICAL DIMENSION -- CHAPTER IV. GALOIS COHOMOLOGY AND FIELD THEORY -- CHAPTER V. LOCAL CLASS FIELD THEORY -- CHAPTER VI. DUALITY -- BIBLIOGRAPHY |
Record Nr. | UNINA-9910154751103321 |
Shatz Stephen S.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 / / John Milnor |
Autore | Milnor John |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (137 pages) : illustrations |
Disciplina | 516.35 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Geometry, Algebraic |
Soggetto non controllato |
3-sphere
Addition Alexander polynomial Algebraic curve Algebraic equation Algebraic geometry Analytic manifold Apply Approximation Binary icosahedral group Boundary (topology) Characteristic polynomial Codimension Coefficient Commutator subgroup Commutator Compact group Complex analysis Complex number Complex projective plane Conjecture Contradiction Coordinate space Coordinate system Derivative Differentiable manifold Dimension Directional derivative Euclidean space Euler number Exact sequence Existential quantification Exotic sphere Fiber bundle Fibration Field of fractions Finite group Finite set Finitely generated group Formal power series Free abelian group Free group Fundamental group Geometry Hermitian matrix Hessian matrix Homology (mathematics) Homology sphere Homotopy sphere Homotopy Hopf fibration Hypersurface Icosahedron Implicit function theorem Integer Integral domain Inverse function theorem Knot group Knot theory Line segment Linear combination Linear map Manifold Minor (linear algebra) Morse theory N-sphere Neighbourhood (mathematics) Normal (geometry) Normal subgroup Open set Orientability Parametrization Polynomial Prime ideal Principal ideal Projective space Real number Regular icosahedron Retract Riemannian manifold Second derivative Sign (mathematics) Simply connected space Smoothness Special case Submanifold Subset Surjective function Tangent space Theorem Topological manifold Topology Transcendence degree Tubular neighborhood Unit interval Unit sphere Unit vector Variable (mathematics) Vector field Vector space |
ISBN | 1-4008-8181-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- §1. INTRODUCTION -- §2. ELEMENTARY FACTS ABOUT REAL OR COMPLEX ALGEBRAIC SETS -- §3. THE CURVE SELECTION LEMMA -- §4. THE FIBRATION THEOREM -- §5. THE TOPOLOGY OF THE FIBERAND OF K -- §6. THE CASE OF AN ISOLATED CRITICAL POINT -- §7. THE MIDDLE BETTI NUMBER OF THE FIBER -- §8. IS K A TOPOLOGICAL SPHERE ? -- §9. BRIESKORN VARIETIES AND WEIGHTED HOMOGENEOUS POLYNOMIALS -- § 10. THE CLASSICAL CASE: CURVES IN C2 -- §11. A FIBRATION THEOREM FOR REAL SINGULARITIES -- APPENDIX A. WHITNEY'S FINITENESS THEOREM FOR ALGEBRAIC SETS -- APPENDIX B. THE MULTIPLICITY OF AN ISOLATED SOLUTION OF ANALYTIC EQUATIONS -- BIBLIOGRAPHY |
Record Nr. | UNINA-9910154743603321 |
Milnor John
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|