Mathematical Gauge Theory : With Applications to the Standard Model of Particle Physics / Mark J.D. Hamilton |
Autore | Hamilton, Mark J. D. |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xviii, 657 p. : ill. ; 24 cm |
Soggetto topico |
15A66 - Clifford algebras, spinors [MSC 2020]
22E70 - Applications of Lie groups to physics; explicit representations [MSC 2020] 81Vxx - Applications of quantum theory to specific physical systems [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 81R40 - Symmetry breaking in quantum theory [MSC 2020] |
Soggetto non controllato |
Connections and curvature
Electroweak interactions Gauge Theory Gauge theory and Lagrangians Gauge theory mathematics Gauge theory of the Standard Model Grand unified theory Higgs Boson Higgs Boson Standard Model Lagrangian Principal bundles Quantum chromodynamics qcd theory Spinors Spontaneous symmetry breaking Standard model of elementary particle physics Vector bundles |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124274 |
Hamilton, Mark J. D. | ||
Cham, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Mathematical Gauge Theory : With Applications to the Standard Model of Particle Physics / Mark J.D. Hamilton |
Autore | Hamilton, Mark J. D. |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xviii, 657 p. : ill. ; 24 cm |
Soggetto topico |
15A66 - Clifford algebras, spinors [MSC 2020]
22E60 - Lie algebras of Lie groups [MSC 2020] 22E70 - Applications of Lie groups to physics; explicit representations [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 81R40 - Symmetry breaking in quantum theory [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 81Vxx - Applications of quantum theory to specific physical systems [MSC 2020] |
Soggetto non controllato |
Connections and curvature
Electroweak interactions Gauge Theory Gauge theory and Lagrangians Gauge theory mathematics Gauge theory of the Standard Model Grand unified theory Higgs Boson Higgs Boson Standard Model Lagrangian Principal bundles Quantum chromodynamics qcd theory Spinors Spontaneous symmetry breaking Standard model of elementary particle physics Vector bundles |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124274 |
Hamilton, Mark J. D. | ||
Cham, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Part 2.: Fibre Bundles, Topology and Gauge Fields / Gerd Rudolph, Matthias Schmidt |
Autore | Rudolph, Gerd |
Pubbl/distr/stampa | Dordrecht, : Springer, 2017 |
Descrizione fisica | xv, 830 p. : ill. ; 24 cm |
Altri autori (Persone) | Schmidt, Matthias |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53C80 - Applications of global differential geometry to the sciences [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 57R22 - Topology of vector bundles and fiber bundles [MSC 2020] 70S15 - Yang-Mills and other gauge theories in mechanics of particles and systems [MSC 2020] |
Soggetto non controllato |
Clifford Algebra
Cohomology theory Dirac operators Gauge orbit space Gribov problem Hodge Theorem Homotopy theory Index theorem Linear connections Postnikov tower Principal bundles Quantum Gauge theory Riemannian geometry Seiberg-Witten model Spin structures Spinor groups Weil homomorphism Weitzenboeck fromulae Whitney sum formula Yang-Mills equation |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0193287 |
Rudolph, Gerd | ||
Dordrecht, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Part 2.: Fibre Bundles, Topology and Gauge Fields / Gerd Rudolph, Matthias Schmidt |
Autore | Rudolph, Gerd |
Pubbl/distr/stampa | Dordrecht, : Springer, 2017 |
Descrizione fisica | xv, 830 p. : ill. ; 24 cm |
Altri autori (Persone) | Schmidt, Matthias |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53C05 - Connections, general theory [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 53C80 - Applications of global differential geometry to the sciences [MSC 2020] 57R22 - Topology of vector bundles and fiber bundles [MSC 2020] 70S15 - Yang-Mills and other gauge theories in mechanics of particles and systems [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] |
Soggetto non controllato |
Clifford Algebra
Cohomology theory Dirac operators Gauge orbit space Gribov problem Hodge Theorem Homotopy theory Index theorem Linear connections Postnikov tower Principal bundles Quantum Gauge theory Riemannian geometry Seiberg-Witten model Spin structures Spinor groups Weil homomorphism Weitzenboeck fromulae Whitney sum formula Yang-Mills equation |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00193287 |
Rudolph, Gerd | ||
Dordrecht, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Principal bundles : the classical case / Stephen Bruce Sontz |
Autore | Sontz, Stephen Bruce |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | XV, 280 p. : ill. ; 24 cm |
Soggetto topico |
78A25 - Electromagnetic theory, general [MSC 2020]
81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 14D21 - Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory) [MSC 2020] |
Soggetto non controllato |
Connections
Curvature Differential geometry Non-commutative Geometry Principal bundles |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0113351 |
Sontz, Stephen Bruce | ||
[Cham], : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Principal bundles : the classical case / Stephen Bruce Sontz |
Autore | Sontz, Stephen Bruce |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | XV, 280 p. : ill. ; 24 cm |
Soggetto topico |
14D21 - Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory) [MSC 2020]
53C05 - Connections, general theory [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 78A25 - Electromagnetic theory, general [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] |
Soggetto non controllato |
Connections
Curvature Differential geometry Non-commutative Geometry Principal bundles |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00113351 |
Sontz, Stephen Bruce | ||
[Cham], : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|