From Great Discoveries in Number Theory to Applications / Michal Křížek, Lawrence Somer, Alena Šolcová
| From Great Discoveries in Number Theory to Applications / Michal Křížek, Lawrence Somer, Alena Šolcová |
| Autore | Krizek, Michal |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | xv, 337 p. : ill. ; 24 cm |
| Altri autori (Persone) |
Solcova, Alena
Somer, Lawrence |
| Soggetto topico |
11-XX - Number theory [MSC 2020]
11Yxx - Computational number theory [MSC 2020] 94A60 - Cryptography [MSC 2020] 11Zxx - Miscellaneous applications of number theory [MSC 2020] 00A08 - Recreational mathematics [MSC 2020] 00A09 - Popularization of mathematics [MSC 2020] |
| Soggetto non controllato |
Coding
Cryptography Figural Numbers Finite Graphs Fractals Kepler Tessellations Natural numbers Primes Pseudoprimes Triangular Numbers |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0274770 |
Krizek, Michal
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From Great Discoveries in Number Theory to Applications / Michal Křížek, Lawrence Somer, Alena Šolcová
| From Great Discoveries in Number Theory to Applications / Michal Křížek, Lawrence Somer, Alena Šolcová |
| Autore | Krizek, Michal |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | xv, 337 p. : ill. ; 24 cm |
| Altri autori (Persone) |
Solcova, Alena
Somer, Lawrence |
| Soggetto topico |
00A08 - Recreational mathematics [MSC 2020]
00A09 - Popularization of mathematics [MSC 2020] 11-XX - Number theory [MSC 2020] 11Yxx - Computational number theory [MSC 2020] 11Zxx - Miscellaneous applications of number theory [MSC 2020] 94A60 - Cryptography [MSC 2020] |
| Soggetto non controllato |
Coding
Cryptography Figural Numbers Finite Graphs Fractals Kepler Tessellations Natural numbers Primes Pseudoprimes Triangular Numbers |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00274770 |
Krizek, Michal
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Groups of prime power order . Volume 3 [[electronic resource] /] / Yakov Berkovich, Zvonimir Janko
| Groups of prime power order . Volume 3 [[electronic resource] /] / Yakov Berkovich, Zvonimir Janko |
| Autore | Berkovich I͡A. G. <1938-> |
| Pubbl/distr/stampa | Berlin, : De Gruyter, 2011 |
| Descrizione fisica | 1 online resource (668 p.) |
| Disciplina | 512/.23 |
| Altri autori (Persone) | JankoZvonimir <1932-> |
| Collana |
De Gruyter expositions in mathematics
Groups of prime power order |
| Soggetto topico |
Finite groups
Group theory |
| Soggetto non controllato |
Group Theory
Order Primes |
| ISBN |
1-283-40037-5
9786613400376 3-11-025448-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- List of definitions and notations -- Preface -- Prerequisites from Volumes 1 and 2 -- §93 Nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4 -- §94 Nonabelian 2-groups all of whose minimal nonabelian subgroups are nonmetacyclic and have exponent 4 -- §95 Nonabelian 2-groups of exponent 2e which have no minimal nonabelian subgroups of exponent 2e -- §96 Groups with at most two conjugate classes of nonnormal subgroups -- §97 p-groups in which some subgroups are generated by elements of order p -- §98 Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic to M2n+1, n 3 fixed -- §99 2-groups with sectional rank at most 4 -- §100 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §101 p-groups G with p > 2 and d(G) = 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §102 p-groups G with p > 2 and d(G) > 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §103 Some results of Jonah and Konvisser -- §104 Degrees of irreducible characters of p-groups associated with finite algebras -- §105 On some special p-groups -- §106 On maximal subgroups of two-generator 2-groups -- §107 Ranks of maximal subgroups of nonmetacyclic two-generator 2-groups -- §108 p-groups with few conjugate classes of minimal nonabelian subgroups -- §109 On p-groups with metacyclic maximal subgroup without cyclic subgroup of index p -- §110 Equilibrated p-groups -- §111 Characterization of abelian and minimal nonabelian groups -- §112 Non-Dedekindian p-groups all of whose nonnormal subgroups have the same order -- §113 The class of 2-groups in §70 is not bounded -- §114 Further counting theorems -- §115 Finite p-groups all of whose maximal subgroups except one are extraspecial -- §116 Groups covered by few proper subgroups -- §117 2-groups all of whose nonnormal subgroups are either cyclic or of maximal class -- §118 Review of characterizations of p-groups with various minimal nonabelian subgroups -- §119 Review of characterizations of p-groups of maximal class -- §120 Nonabelian 2-groups such that any two distinct minimal nonabelian subgroups have cyclic intersection -- §121 p-groups of breadth 2 -- §122 p-groups all of whose subgroups have normalizers of index at most p -- §123 Subgroups of finite groups generated by all elements in two shortest conjugacy classes -- §124 The number of subgroups of given order in a metacyclic p-group -- §125 p-groups G containing a maximal subgroup H all of whose subgroups are G-invariant -- §126 The existence of p-groups G1 G such that Aut(G1) Aut(G) -- §127 On 2-groups containing a maximal elementary abelian subgroup of order 4 -- §128 The commutator subgroup of p-groups with the subgroup breadth 1 -- §129 On two-generator 2-groups with exactly one maximal subgroup which is not two-generator -- §130 Soft subgroups of p-groups -- §131 p-groups with a 2-uniserial subgroup of order p -- §132 On centralizers of elements in p-groups -- §133 Class and breadth of a p-group -- §134 On p-groups with maximal elementary abelian subgroup of order p2 -- §135 Finite p-groups generated by certain minimal nonabelian subgroups -- §136 p-groups in which certain proper nonabelian subgroups are two-generator -- §137 p-groups all of whose proper subgroups have its derived subgroup of order at most p -- §138 p-groups all of whose nonnormal subgroups have the smallest possible normalizer -- §139 p-groups with a noncyclic commutator group all of whose proper subgroups have a cyclic commutator group -- §140 Power automorphisms and the norm of a p-group -- §141 Nonabelian p-groups having exactly one maximal subgroup with a noncyclic center -- §142 Nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian -- §143 Alternate proof of the Reinhold Baer theorem on 2-groups with nonabelian norm -- §144 p-groups with small normal closures of all cyclic subgroups -- Appendix 27 Wreathed 2-groups -- Appendix 28 Nilpotent subgroups -- Appendix 29 Intersections of subgroups -- Appendix 30 Thompson's lemmas -- Appendix 31 Nilpotent p'-subgroups of class 2 in GL(n, p) -- Appendix 32 On abelian subgroups of given exponent and small index -- Appendix 33 On Hadamard 2-groups -- Appendix 34 Isaacs-Passman's theorem on character degrees -- Appendix 35 Groups of Frattini class 2 -- Appendix 36 Hurwitz' theorem on the composition of quadratic forms -- Appendix 37 On generalized Dedekindian groups -- Appendix 38 Some results of Blackburn and Macdonald -- Appendix 39 Some consequences of Frobenius' normal p-complement theorem -- Appendix 40 Varia -- Appendix 41 Nonabelian 2-groups all of whose minimal nonabelian subgroups have cyclic centralizers -- Appendix 42 On lattice isomorphisms of p-groups of maximal class -- Appendix 43 Alternate proofs of two classical theorems on solvable groups and some related results -- Appendix 44 Some of Freiman's results on finite subsets of groups with small doubling -- Research problems and themes III -- Author index -- Subject index |
| Record Nr. | UNINA-9910781509103321 |
Berkovich I͡A. G. <1938->
|
||
| Berlin, : De Gruyter, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Groups of prime power order . Volume 1 [[electronic resource] /] / by Yakov Berkovich
| Groups of prime power order . Volume 1 [[electronic resource] /] / by Yakov Berkovich |
| Autore | Berkovich Yakov |
| Pubbl/distr/stampa | Berlin ; ; New York, : W. de Gruyter, c2008 |
| Descrizione fisica | 1 online resource (532 p.) |
| Disciplina | 512.23 |
| Collana | De Gruyter expositions in mathematics |
| Soggetto topico |
Finite groups
Group theory |
| Soggetto non controllato |
Group Theory
Order Primes |
| ISBN |
1-281-99347-6
9786611993474 3-11-020822-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- List of definitions and notations -- Foreword -- Preface -- Introduction -- §1. Groups with a cyclic subgroup of index p. Frattini subgroup. Varia -- §2. The class number, character degrees -- §3. Minimal classes -- §4. p-groups with cyclic Frattini subgroup -- §5. Hall's enumeration principle -- §6. q'-automorphisms of q-groups -- §7. Regular p-groups -- §8. Pyramidal p-groups -- §9. On p-groups of maximal class -- §10. On abelian subgroups of p-groups -- §11. On the power structure of a p-group -- §12. Counting theorems for p-groups of maximal class -- §13. Further counting theorems -- §14. Thompson's critical subgroup -- §15. Generators of p-groups -- §16. Classification of finite p-groups all of whose noncyclic subgroups are normal -- §17. Counting theorems for regular p-groups -- §18. Counting theorems for irregular p-groups -- §19. Some additional counting theorems -- §20. Groups with small abelian subgroups and partitions -- §21. On the Schur multiplier and the commutator subgroup -- §22. On characters of p-groups -- §23. On subgroups of given exponent -- §24. Hall's theorem on normal subgroups of given exponent -- §25. On the lattice of subgroups of a group -- §26. Powerful p-groups -- §27. p-groups with normal centralizers of all elements -- §28. p-groups with a uniqueness condition for nonnormal subgroups -- §29. On isoclinism -- §30. On p-groups with few nonabelian subgroups of order pp and exponent p -- §31. On p-groups with small p0-groups of operators -- §32. W. Gaschütz's and P. Schmid's theorems on p-automorphisms of p-groups -- §33. Groups of order pm with automorphisms of order pm-1, pm-2 or pm-3 -- §34. Nilpotent groups of automorphisms -- §35. Maximal abelian subgroups of p-groups -- §36. Short proofs of some basic characterization theorems of finite p-group theory -- §37. MacWilliams' theorem -- §38. p-groups with exactly two conjugate classes of subgroups of small orders and exponentp > 2 -- §39. Alperin's problem on abelian subgroups of small index -- §40. On breadth and class number of p-groups -- §41. Groups in which every two noncyclic subgroups of the same order have the same rank -- §42. On intersections of some subgroups -- §43. On 2-groups with few cyclic subgroups of given order -- §44. Some characterizations of metacyclic p-groups -- §45. A counting theorem for p-groups of odd order -- Appendix 1. The Hall-Petrescu formula -- Appendix 2. Mann's proof of monomiality of p-groups -- Appendix 3. Theorems of Isaacs on actions of groups -- Appendix 4. Freiman's number-theoretical theorems -- Appendix 5. Another proof of Theorem 5.4 -- Appendix 6. On the order of p-groups of given derived length -- Appendix 7. Relative indices of elements of p-groups -- Appendix 8. p-groups withabsolutely regular Frattini subgroup -- Appendix 9. On characteristic subgroups of metacyclic groups -- Appendix 10. On minimal characters of p-groups -- Appendix 11. On sums of degrees of irreducible characters -- Appendix 12. 2-groups whose maximal cyclic subgroups of order > 2 are self-centralizing -- Appendix 13. Normalizers of Sylow p-subgroups of symmetric groups -- Appendix 14. 2-groups with an involution contained in only one subgroup of order 4 -- Appendix 15. A criterion for a group to be nilpotent -- Research problems and themes I -- Backmatter |
| Record Nr. | UNINA-9910782769703321 |
Berkovich Yakov
|
||
| Berlin ; ; New York, : W. de Gruyter, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Groups of prime power order . Volume 2 [[electronic resource] /] / by Yakov Berkovich and Zvonimir Janko
| Groups of prime power order . Volume 2 [[electronic resource] /] / by Yakov Berkovich and Zvonimir Janko |
| Autore | Berkovich Yakov |
| Pubbl/distr/stampa | Berlin ; ; New York, : W. de Gruyter, c2008 |
| Descrizione fisica | 1 online resource (612 p.) |
| Disciplina | 512.23 |
| Altri autori (Persone) | JankoZvonimir |
| Collana | De Gruyter expositions in mathematics |
| Soggetto topico |
Finite groups
Group theory |
| Soggetto non controllato |
Group Theory
Order Primes |
| ISBN |
1-281-99348-4
9786611993481 3-11-916239-6 3-11-020823-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- List of definitions and notations -- Preface -- §46. Degrees of irreducible characters of Suzuki p-groups -- §47. On the number of metacyclic epimorphic images of finite p-groups -- §48. On 2-groups with small centralizer of an involution, I -- §49. On 2-groups with small centralizer of an involution, II -- §50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8 -- §51. 2-groups with self centralizing subgroup isomorphic to E8 -- §52. 2-groups with 2-subgroup of small order -- §53. 2-groups G with c2(G) = 4 -- §54. 2-groups G with cn(G) = 4, n > 2 -- §55. 2-groups G with small subgroup (x ∈ G | o(x) = 2") -- §56. Theorem of Ward on quaternion-free 2-groups -- §57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4 -- §58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate -- §59. p-groups with few nonnormal subgroups -- §60. The structure of the Burnside group of order 212 -- §61. Groups of exponent 4 generated by three involutions -- §62. Groups with large normal closures of nonnormal cyclic subgroups -- §63. Groups all of whose cyclic subgroups of composite orders are normal -- §64. p-groups generated by elements of given order -- §65. A2-groups -- §66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups -- §67. Determination of U2-groups -- §68. Characterization of groups of prime exponent -- §69. Elementary proofs of some Blackburn's theorems -- §70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator -- §71. Determination of A2-groups -- §72. An-groups, n > 2 -- §73. Classification of modular p-groups -- §74. p-groups with a cyclic subgroup of index p2 -- §75. Elements of order ≤ in p-groups -- §76. p-groups with few A1-subgroups -- §77. 2-groups with a self-centralizing abelian subgroup of type (4, 2) -- §78. Minimal nonmodular p-groups -- §79. Nonmodular quaternion-free 2-groups -- §80. Minimal non-quaternion-free 2-groups -- §81. Maximal abelian subgroups in 2-groups -- §82. A classification of 2-groups with exactly three involutions -- §83. p-groups G with Ω2(G) or Ω2*(G) extraspecial -- §84. 2-groups whose nonmetacyclic subgroups are generated by involutions -- §85. 2-groups with a nonabelian Frattini subgroup of order 16 -- §86. p-groups G with metacyclic Ω2*(G) -- §87. 2-groups with exactly one nonmetacyclic maximal subgroup -- §88. Hall chains in normal subgroups of p-groups -- §89. 2-groups with exactly six cyclic subgroups of order 4 -- §90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8 -- §91. Maximal abelian subgroups of p-groups -- §92. On minimal nonabelian subgroups of p-groups -- Appendix 16. Some central products -- Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results -- Appendix 18. Replacement theorems -- Appendix 19. New proof of Ward's theorem on quaternion-free 2-groups -- Appendix 20. Some remarks on automorphisms -- Appendix 21. Isaacs' examples -- Appendix 22. Minimal nonnilpotent groups -- Appendix 23. Groups all of whose noncentral conjugacy classes have the same size -- Appendix 24. On modular 2-groups -- Appendix 25. Schreier's inequality for p-groups -- Appendix 26. p-groups all of whose nonabelian maximal subgroups are either absolutely regular or of maximal class -- Research problems and themes II -- Backmatter |
| Record Nr. | UNINA-9910782769603321 |
Berkovich Yakov
|
||
| Berlin ; ; New York, : W. de Gruyter, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical Thinking : Why Everyone Should Study Math / Howard Karloff
| Mathematical Thinking : Why Everyone Should Study Math / Howard Karloff |
| Autore | Karloff, Howard |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2023 |
| Descrizione fisica | x, 198 p. : ill. ; 24 cm |
| Soggetto topico |
00A08 - Recreational mathematics [MSC 2020]
97-XX - Mathematics education [MSC 2020] |
| Soggetto non controllato |
Euclidean algorithm
Invitation mathematics Math and computer science Math majors Math puzzles Math recruiting Math recruitment Math transition course Mathematical beauty Mathematical thinking Modular arithmetic Primes Python code math |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00279356 |
Karloff, Howard
|
||
| Cham, : Birkhäuser, : Springer, 2023 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Nice numbers / John Barnes
| Nice numbers / John Barnes |
| Autore | Barnes, John |
| Pubbl/distr/stampa | [Basel], : Birkhäuser, : Springer, 2016 |
| Descrizione fisica | XIII, 329 p. : ill. ; 24 cm |
| Soggetto topico |
11-XX - Number theory [MSC 2020]
00A05 - Mathematics in general [MSC 2020] 00A65 - Mathematics and music [MSC 2020] 00A09 - Popularization of mathematics [MSC 2020] |
| Soggetto non controllato |
Babylonian
Bell Calendar Cryptography Music Numbers Primes Probability Ringing Rubik cube |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0115046 |
Barnes, John
|
||
| [Basel], : Birkhäuser, : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Nice numbers / John Barnes
| Nice numbers / John Barnes |
| Autore | Barnes, John |
| Pubbl/distr/stampa | [Basel], : Birkhäuser, : Springer, 2016 |
| Descrizione fisica | XIII, 329 p. : ill. ; 24 cm |
| Soggetto topico |
00A05 - Mathematics in general [MSC 2020]
00A09 - Popularization of mathematics [MSC 2020] 00A65 - Mathematics and music [MSC 2020] 11-XX - Number theory [MSC 2020] |
| Soggetto non controllato |
Babylonian
Bell Calendar Cryptography Music Numbers Primes Probability Ringing Rubik cube |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00115046 |
Barnes, John
|
||
| [Basel], : Birkhäuser, : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Number Theory - Diophantine Problems, Uniform Distribution and Applications : Festschrift in Honour of Robert F. Tichy’s 60th Birthday / Christian Elsholtz, Peter Grabner editors
| Number Theory - Diophantine Problems, Uniform Distribution and Applications : Festschrift in Honour of Robert F. Tichy’s 60th Birthday / Christian Elsholtz, Peter Grabner editors |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xv, 444 p. ; 24 cm |
| Soggetto topico |
11-XX - Number theory [MSC 2020]
11Kxx - Probabilistic theory: distribution modulo 1; metric theory of algorithms [MSC 2020] 11Jxx - Diophantine approximation, transcendental number theory [MSC 2020] 00B15 - Collections of articles of miscellaneous specific interest [MSC 2020] |
| Soggetto non controllato |
Actuarial mathematics
Digit representation of integer sequences Diophantine Equations Number theory Primes Uniform distribution of sequences and discrepancy |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0123423 |
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Number Theory - Diophantine Problems, Uniform Distribution and Applications : Festschrift in Honour of Robert F. Tichy’s 60th Birthday / Christian Elsholtz, Peter Grabner editors
| Number Theory - Diophantine Problems, Uniform Distribution and Applications : Festschrift in Honour of Robert F. Tichy’s 60th Birthday / Christian Elsholtz, Peter Grabner editors |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xv, 444 p. ; 24 cm |
| Soggetto topico |
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
11-XX - Number theory [MSC 2020] 11Jxx - Diophantine approximation, transcendental number theory [MSC 2020] 11Kxx - Probabilistic theory: distribution modulo 1; metric theory of algorithms [MSC 2020] |
| Soggetto non controllato |
Actuarial mathematics
Digit representation of integer sequences Diophantine Equations Number theory Primes Uniform distribution of sequences and discrepancy |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00123423 |
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||