The Moment Problem / Konrad Schmüdgen
| The Moment Problem / Konrad Schmüdgen |
| Autore | Schmüdgen, Konrad |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xii, 535 p. : ill. ; 24 cm |
| Soggetto topico |
14P10 - Semialgebraic sets and related spaces [MSC 2020]
44A60 - Moment problems [MSC 2020] 47A57 - Linear operator methods in interpolation, moment and extension problems [MSC 2020] |
| Soggetto non controllato |
Canonical solutions
Carleman condition Hamburger moment problem Hankel matrix Hausdorff moment problem Jacobi operators Moment problem on semi-algebraic sets Nevanlinna parametrization Orthogonal polynomials Polynomial optimization Positive polynomials Positivstellensätze Principal solutions Stieltjes moment problem Weyl circle |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124049 |
Schmüdgen, Konrad
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The Moment Problem / Konrad Schmüdgen
| The Moment Problem / Konrad Schmüdgen |
| Autore | Schmüdgen, Konrad |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xii, 535 p. : ill. ; 24 cm |
| Soggetto topico |
14P10 - Semialgebraic sets and related spaces [MSC 2020]
44A60 - Moment problems [MSC 2020] 47A57 - Linear operator methods in interpolation, moment and extension problems [MSC 2020] |
| Soggetto non controllato |
Canonical solutions
Carleman condition Hamburger moment problem Hankel matrix Hausdorff moment problem Jacobi operators Moment problem on semi-algebraic sets Nevanlinna parametrization Orthogonal polynomials Polynomial optimization Positive polynomials Positivstellensätze Principal solutions Stieltjes moment problem Weyl circle |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124049 |
Schmüdgen, Konrad
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||