C-Algebra Extensions and K-Homology. (AM-95), Volume 95 / / Ronald G. Douglas
| C-Algebra Extensions and K-Homology. (AM-95), Volume 95 / / Ronald G. Douglas |
| Autore | Douglas Ronald G. |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (94 pages) : illustrations |
| Disciplina | 512/.55 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
C*-algebras
K-theory Algebra, Homological |
| Soggetto non controllato |
Addition
Affine transformation Algebraic topology Atiyah–Singer index theorem Automorphism Banach algebra Bijection Boundary value problem Bundle map C*-algebra Calculation Cardinal number Category of abelian groups Characteristic class Chern class Clifford algebra Coefficient Cohomology Compact operator Completely positive map Contact geometry Continuous function Corollary Diagram (category theory) Diffeomorphism Differentiable manifold Differential operator Dimension (vector space) Dimension function Dimension Direct integral Direct proof Eigenvalues and eigenvectors Equivalence class Equivalence relation Essential spectrum Euler class Exact sequence Existential quantification Fiber bundle Finite group Fredholm operator Fredholm Free abelian group Fundamental class Fundamental group Hardy space Hermann Weyl Hilbert space Homological algebra Homology (mathematics) Homomorphism Homotopy Ideal (ring theory) Inner automorphism Irreducible representation K-group K-theory Lebesgue space Locally compact group Maximal compact subgroup Michael Atiyah Monomorphism Morphism Natural number Natural transformation Normal operator Operator algebra Operator norm Operator theory Orthogonal group Pairing Piecewise linear manifold Polynomial Pontryagin class Positive and negative parts Positive map Pseudo-differential operator Quaternion Quotient algebra Self-adjoint operator Self-adjoint Simply connected space Smooth structure Special case Stein manifold Strong topology Subalgebra Subgroup Subset Summation Tangent bundle Theorem Todd class Topology Torsion subgroup Unitary operator Universal coefficient theorem Variable (mathematics) Von Neumann algebra |
| ISBN | 1-4008-8146-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1. An Overview -- Chapter 2. Ext as a Group -- Chapter 3. Ext as a Homotopy Functor -- Chapter 4. Generalized Homology Theory and Periodicity -- Chapter 5. Ext as K-Homology -- Chapter 6. Index Theorems snd Novikov's Higher Signatures -- References -- Index -- Index of Symbols -- Backmatter |
| Record Nr. | UNINA-9910154752903321 |
Douglas Ronald G.
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier
| Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier |
| Autore | Zagier, Don Bernard |
| Pubbl/distr/stampa | Berlin, : Springer, 1972 |
| Descrizione fisica | vii, 130 p. ; 24 cm |
| Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
57R20 - Characteristic classes and numbers in differential topology [MSC 2020] 57S25 - Groups acting on specific manifolds [MSC 2020] 11A15 - Power residues, reciprocity [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] 57Pxx - Generalized manifolds [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] |
| Soggetto non controllato |
Cohomoly
Manifolds Number theory Pontryagin class Spaces Theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0255525 |
Zagier, Don Bernard
|
||
| Berlin, : Springer, 1972 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier
| Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier |
| Autore | Zagier, Don Bernard |
| Pubbl/distr/stampa | Berlin, : Springer, 1972 |
| Descrizione fisica | vii, 130 p. ; 24 cm |
| Soggetto topico |
11A15 - Power residues, reciprocity [MSC 2020]
57-XX - Manifolds and cell complexes [MSC 2020] 57Pxx - Generalized manifolds [MSC 2020] 57R20 - Characteristic classes and numbers in differential topology [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 57S25 - Groups acting on specific manifolds [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] |
| Soggetto non controllato |
Cohomoly
Manifolds Number theory Pontryagin class Spaces Theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00255525 |
Zagier, Don Bernard
|
||
| Berlin, : Springer, 1972 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||