Periods in Quantum Field Theory and Arithmetic : ICMAT, Madrid, Spain, September 15 – December 19, 2014 / José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl editors
| Periods in Quantum Field Theory and Arithmetic : ICMAT, Madrid, Spain, September 15 – December 19, 2014 / José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl editors |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | x, 630 p. : ill. ; 24 cm |
| Soggetto topico |
11G09 - Drinfel'd modules; higher-dimensional motives, etc. [MSC 2020]
20E08 - Groups acting on trees [MSC 2020] 17B81 - Applications of Lie (super)algebras to physics, etc. [MSC 2020] 11M32 - Multiple Dirichlet series and zeta functions and multizeta values [MSC 2020] |
| Soggetto non controllato |
Combinatorics
Ecalle's mould calculus Elliptic dilogarithm Feynman amplitudes Lie Algebras Motivic Galois group Multiple zeta values Periods Polylogarithms Renormalization Rooted trees Shuffle algebras String amplitudes q-multiple zeta values |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0249643 |
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Periods in Quantum Field Theory and Arithmetic : ICMAT, Madrid, Spain, September 15 – December 19, 2014 / José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl editors
| Periods in Quantum Field Theory and Arithmetic : ICMAT, Madrid, Spain, September 15 – December 19, 2014 / José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl editors |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | x, 630 p. : ill. ; 24 cm |
| Soggetto topico |
11G09 - Drinfel'd modules; higher-dimensional motives, etc. [MSC 2020]
11M32 - Multiple Dirichlet series and zeta functions and multizeta values [MSC 2020] 17B81 - Applications of Lie (super)algebras to physics, etc. [MSC 2020] 20E08 - Groups acting on trees [MSC 2020] |
| Soggetto non controllato |
Combinatorics
Ecalle's mould calculus Elliptic dilogarithm Feynman amplitudes Lie Algebras Motivic Galois group Multiple zeta values Periods Polylogarithms Renormalization Rooted trees Shuffle algebras String amplitudes q-multiple zeta values |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00249643 |
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Realizations of Polylogarithms / Jörg Wildeshaus
| Realizations of Polylogarithms / Jörg Wildeshaus |
| Autore | Wildeshaus, Jörg |
| Pubbl/distr/stampa | Berlin ; Heidelberg, : Springer, 1997 |
| Descrizione fisica | xi, 343 p. ; 24 cm |
| Soggetto topico |
11-XX - Number theory [MSC 2020]
11F67 - Special values of automorphic $L$-series, periods of automorphic forms, cohomology, modular symbols [MSC 2020] 11G09 - Drinfel'd modules; higher-dimensional motives, etc. [MSC 2020] 11G18 - Arithmetic aspects of modular and Shimura varieties [MSC 2020] 14G35 - Modular and Shimura varieties [MSC 2020] 19F27 - Étale cohomology, higher regulators, zeta and $L$-functions ($K$-theoretic aspects) [MSC 2020] 32G20 - Period matrices, variation of Hodge structure; degenerations [MSC 2020] |
| Soggetto non controllato |
Algebra
Algebraic Geometry Logarithms Polylogarithms Realization theory |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00297520 |
Wildeshaus, Jörg
|
||
| Berlin ; Heidelberg, : Springer, 1997 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||