Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev |
Autore | Harari, David |
Pubbl/distr/stampa | Cham, : EDP Sciences, : Springer, 2020 |
Descrizione fisica | xiv, 338 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11R37 - Class field theory [MSC 2020] 11R29 - Class numbers, class groups, discriminants [MSC 2020] 11S31 - Class field theory; p-adic formal groups [MSC 2020] 11R34 - Galois cohomology [MSC 2020] 11S25 - Galois cohomology [MSC 2020] 12G05 - Galois cohomology [MSC 2020] |
Soggetto non controllato |
Brauer group
Class field theory Galois cohomology Global fields Local fields Lubin-Tate formal group Poitou-Tate duality Profinite groups |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249286 |
Harari, David | ||
Cham, : EDP Sciences, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev |
Autore | Harari, David |
Pubbl/distr/stampa | Cham, : EDP Sciences, : Springer, 2020 |
Descrizione fisica | xiv, 338 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11R29 - Class numbers, class groups, discriminants [MSC 2020] 11R34 - Galois cohomology [MSC 2020] 11R37 - Class field theory [MSC 2020] 11S25 - Galois cohomology [MSC 2020] 11S31 - Class field theory; p-adic formal groups [MSC 2020] 12G05 - Galois cohomology [MSC 2020] |
Soggetto non controllato |
Brauer group
Class field theory Galois cohomology Global fields Local fields Lubin-Tate formal group Poitou-Tate duality Profinite groups |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249286 |
Harari, David | ||
Cham, : EDP Sciences, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|