Holomorphic Vector Bundles over Compact Complex Surfaces / Vasile Brînzănescu
| Holomorphic Vector Bundles over Compact Complex Surfaces / Vasile Brînzănescu |
| Autore | Brînzănescu, Vasile |
| Pubbl/distr/stampa | Berlin ; Heidelberg, : Springer, 1996 |
| Descrizione fisica | x, 170 p. : ill. ; 24 cm |
| Soggetto topico |
32-XX - Several complex variables and analytic spaces [MSC 2020]
32J15 - Compact complex surfaces [MSC 2020] 32L10 - Sheaves and cohomology of sections of holomorphic vector bundles, general results [MSC 2020] |
| Soggetto non controllato |
Complex Surfaces
Differential geometry Holomorphic vector bundles Line bundles Moduli spaces of vector bundles Picard group Vector bundles |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00295995 |
Brînzănescu, Vasile
|
||
| Berlin ; Heidelberg, : Springer, 1996 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Introduction to Algebraic K-Theory. (AM-72), Volume 72 / / John Milnor
| Introduction to Algebraic K-Theory. (AM-72), Volume 72 / / John Milnor |
| Autore | Milnor John |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (200 pages) |
| Disciplina | 512/.4 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Associative rings
Abelian groups Functor theory |
| Soggetto non controllato |
Abelian group
Absolute value Addition Algebraic K-theory Algebraic equation Algebraic integer Banach algebra Basis (linear algebra) Big O notation Circle group Coefficient Commutative property Commutative ring Commutator Complex number Computation Congruence subgroup Coprime integers Cyclic group Dedekind domain Direct limit Direct proof Direct sum Discrete valuation Division algebra Division ring Elementary matrix Elliptic function Exact sequence Existential quantification Exterior algebra Factorization Finite group Free abelian group Function (mathematics) Fundamental group Galois extension Galois group General linear group Group extension Hausdorff space Homological algebra Homomorphism Homotopy Ideal (ring theory) Ideal class group Identity element Identity matrix Integral domain Invertible matrix Isomorphism class K-theory Kummer theory Lattice (group) Left inverse Local field Local ring Mathematics Matsumoto's theorem Maximal ideal Meromorphic function Monomial Natural number Noetherian Normal subgroup Number theory Open set Picard group Polynomial Prime element Prime ideal Projective module Quadratic form Quaternion Quotient ring Rational number Real number Right inverse Ring of integers Root of unity Schur multiplier Scientific notation Simple algebra Special case Special linear group Subgroup Summation Surjective function Tensor product Theorem Topological K-theory Topological group Topological space Topology Torsion group Variable (mathematics) Vector space Wedderburn's theorem Weierstrass function Whitehead torsion |
| ISBN | 1-4008-8179-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface and Guide to the Literature -- Contents -- §1. Projective Modules and K0Λ -- §2 . Constructing Projective Modules -- §3. The Whitehead Group K1Λ -- §4. The Exact Sequence Associated with an Ideal -- §5. Steinberg Groups and the Functor K2 -- §6. Extending the Exact Sequences -- §7. The Case of a Commutative Banach Algebra -- §8. The Product K1Λ ⊗ K1Λ K2Λ -- §9. Computations in the Steinberg Group -- §10. Computation of K2Z -- §11. Matsumoto's Computation of K2 of a Field -- 12. Proof of Matsumoto's Theorem -- §13. More about Dedekind Domains -- §14. The Transfer Homomorphism -- §15. Power Norm Residue Symbols -- §16. Number Fields -- Appendix. Continuous Steinberg Symbols -- Index |
| Record Nr. | UNINA-9910154752203321 |
Milnor John
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction to Toric Varieties. (AM-131), Volume 131 / / William Fulton
| Introduction to Toric Varieties. (AM-131), Volume 131 / / William Fulton |
| Autore | Fulton William |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (171 pages) : illustrations |
| Disciplina | 516.3/53 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Toric varieties |
| Soggetto non controllato |
Addition
Affine plane Affine space Affine variety Alexander Grothendieck Alexander duality Algebraic curve Algebraic group Atiyah–Singer index theorem Automorphism Betti number Big O notation Characteristic class Chern class Chow group Codimension Cohomology Combinatorics Commutative property Complete intersection Convex polytope Convex set Coprime integers Cotangent space Dedekind sum Dimension (vector space) Dimension Direct proof Discrete valuation ring Discrete valuation Disjoint union Divisor (algebraic geometry) Divisor Dual basis Dual space Equation Equivalence class Equivariant K-theory Euler characteristic Exact sequence Explicit formula Facet (geometry) Fundamental group Graded ring Grassmannian H-vector Hirzebruch surface Hodge theory Homogeneous coordinates Homomorphism Hypersurface Intersection theory Invertible matrix Invertible sheaf Isoperimetric inequality Lattice (group) Leray spectral sequence Limit point Line bundle Line segment Linear subspace Local ring Mathematical induction Mixed volume Moduli space Moment map Monotonic function Natural number Newton polygon Open set Picard group Pick's theorem Polytope Projective space Quadric Quotient space (topology) Regular sequence Relative interior Resolution of singularities Restriction (mathematics) Resultant Riemann–Roch theorem Serre duality Sign (mathematics) Simplex Simplicial complex Simultaneous equations Spectral sequence Subgroup Subset Summation Surjective function Tangent bundle Theorem Topology Toric variety Unit disk Vector space Weil conjecture Zariski topology |
| ISBN | 1-4008-8252-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Errata -- Chapter 1. Definitions and examples -- Chapter 2. Singularities and compactness -- Chapter 3. Orbits, topology, and line bundles -- Chapter 4. Moment maps and the tangent bundle -- Chapter 5. Intersection theory -- Notes -- References -- Index of Notation -- Index |
| Record Nr. | UNINA-9910154749903321 |
Fulton William
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||