Entire Holomorphic Mappings in One and Several Complex Variables. (AM-85), Volume 85 / / Phillip A. Griffiths |
Autore | Griffiths Phillip A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (112 pages) : illustrations |
Disciplina | 515/.9 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Holomorphic mappings |
Soggetto non controllato |
Algebraic variety
Analytic function Analytic set Armand Borel Big O notation Canonical bundle Cartesian coordinate system Characteristic function (probability theory) Characterization (mathematics) Chern class Compact Riemann surface Compact space Complex analysis Complex manifold Complex projective space Corollary Counting Curvature Degeneracy (mathematics) Derivative Differential form Dimension Divisor Elementary proof Entire function Equation Exponential growth Gaussian curvature Hermann Weyl Hodge theory Holomorphic function Hyperplane Hypersurface Infinite product Integral geometry Invariant measure Inverse problem Jacobian matrix and determinant Kähler manifold Line bundle Linear equation Logarithmic derivative Manifold Meromorphic function Modular form Monograph Nevanlinna theory Nonlinear system Phillip Griffiths Picard theorem Polynomial Projective space Q.E.D. Quantity Ricci curvature Riemann sphere Scientific notation Several complex variables Special case Stokes' theorem Subset Summation Theorem Theory Uniformization theorem Unit square Volume form |
ISBN | 1-4008-8148-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INDEX OF NOTATIONS -- INTRODUCTION -- CHAPTER 1. ORDERS OF GROWTH -- CHAPTER 2. THE APPEARANCE OF CURVATURE -- CHAPTER 3. THE DEFECT RELATIONS -- BIBLIOGRAPHY -- Backmatter |
Record Nr. | UNINA-9910154753903321 |
Griffiths Phillip A. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topics in Transcendental Algebraic Geometry. (AM-106), Volume 106 / / Phillip A. Griffiths |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (328 pages) : illustrations |
Disciplina | 512/.33 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Geometry, Algebraic
Hodge theory Torelli theorem |
Soggetto non controllato |
Abelian integral
Algebraic curve Algebraic cycle Algebraic equation Algebraic geometry Algebraic integer Algebraic structure Algebraic surface Arithmetic genus Arithmetic group Asymptotic analysis Automorphism Base change Bilinear form Bilinear map Cohomology Combinatorics Commutative diagram Compactification (mathematics) Complete intersection Complex manifold Complex number Computation Deformation theory Degeneracy (mathematics) Differentiable manifold Dimension (vector space) Divisor (algebraic geometry) Divisor Elliptic curve Elliptic surface Equation Exact sequence Fiber bundle Function (mathematics) Fundamental class Geometric genus Geometry Hermitian symmetric space Hodge structure Hodge theory Homology (mathematics) Homomorphism Homotopy Hypersurface Intersection form (4-manifold) Intersection number Irreducibility (mathematics) Isomorphism class Jacobian variety K3 surface Kodaira dimension Kronecker's theorem Kummer surface Kähler manifold Lie algebra bundle Lie algebra Linear algebra Linear algebraic group Line–line intersection Mathematical induction Mathematical proof Mathematics Modular arithmetic Module (mathematics) Moduli space Monodromy matrix Monodromy theorem Monodromy Nilpotent orbit Normal function Open set Period mapping Permutation group Phillip Griffiths Point at infinity Pole (complex analysis) Polynomial Projective space Pullback (category theory) Quadric Regular singular point Resolution of singularities Riemann–Roch theorem for surfaces Scientific notation Set (mathematics) Special case Spectral sequence Subgroup Submanifold Surface of general type Surjective function Tangent bundle Theorem Topology Torelli theorem Transcendental number Vector space Zariski topology Zariski's main theorem |
ISBN | 1-4008-8165-X |
Classificazione | SK 240 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Table of Contents -- INTRODUCTION / Griffiths, Phillip -- Chapter I. VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter II. CURVATURE PROPERTIES OF THE HODGE BUNDLES / Griffiths, Phillip / Tu, Loring -- Chapter III. INFINITESIMAL VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter IV. ASYMPTOTIC BEHAVIOR OF A VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter V. MIXED HODGE STRUCTURES, COMPACTIFICATIONS AND MONODROMY WEIGHT FILTRATION / Cattani, Eduardo H. -- Chapter VI. THE CLEMENS-SCHMID EXACT SEQUENCE AND APPLICATIONS / Morrison, David R. -- Chapter VII DEGENERATION OF HODGE BUNDLES (AFTER STEENBRINK) / Zucker, Steven -- Chapter VIII. INFINITESIMAL TORELLI THEOREMS AND COUNTEREXAMPLES TO TORELLI PROBLEMS / Catanese, Fabrizio M.E. -- Chapter IX. THE TORELLI PROBLEM FOR ELLIPTIC PENCILS / Chakiris, Ken -- Chapter X. THE PERIOD MAP AT THE BOUNDARY OF MODULI / Friedman, Robert -- Chapter XI. THE GENERIC TORELLI PROBLEM FOR PRYM VARIETIES AND INTERSECTIONS OF THREE QUADRICS / Smith, Roy -- Chapter XII. INFINITESIMAL VARIATION OF HODGE STRUCTURE AND THE GENERIC GLOBAL TORELLI THEOREM / Griffiths, Phillip / Tu, Loring -- Chapter XIII. GENERIC TORELLI AND VARIATIONAL SCHOTTKY / Donagi, Ron -- Chapter XIV. INTERMEDIATE JACOBIANS AND NORMAL FUNCTIONS / Zucker, Steven -- Chapter XV. EXTENDABILITY OF NORMAL FUNCTIONS ASSOCIATED TO ALGEBRAIC CYCLES / Zein, Fouad El / Zucker, Steven -- Chapter XVI. SOME RESULTS ABOUT ABEL-JACOBI MAPPINGS / Clemens, Herbert -- Chapter XVII. INFINITESIMAL INVARIANT OF NORMAL FUNCTIONS / Griffiths, Phillip -- Backmatter |
Record Nr. | UNINA-9910154742603321 |
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|