Chaotic transitions in deterministic and stochastic dynamical systems : applications of Melnikov processes in engineering, physics, and neuroscience / / Emil Simiu |
Autore | Simiu Emil |
Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 2002 |
Descrizione fisica | 1 online resource (244 p.) |
Disciplina | 515/.352 |
Collana | Princeton Series in Applied Mathematics |
Soggetto topico |
Differentiable dynamical systems
Chaotic behavior in systems Stochastic systems |
Soggetto non controllato |
Affine transformation
Amplitude Arbitrarily large Attractor Autocovariance Big O notation Central limit theorem Change of variables Chaos theory Coefficient of variation Compound Probability Computational problem Control theory Convolution Coriolis force Correlation coefficient Covariance function Cross-covariance Cumulative distribution function Cutoff frequency Deformation (mechanics) Derivative Deterministic system Diagram (category theory) Diffeomorphism Differential equation Dirac delta function Discriminant Dissipation Dissipative system Dynamical system Eigenvalues and eigenvectors Equations of motion Even and odd functions Excitation (magnetic) Exponential decay Extreme value theory Flow velocity Fluid dynamics Forcing (recursion theory) Fourier series Fourier transform Fractal dimension Frequency domain Gaussian noise Gaussian process Harmonic analysis Harmonic function Heteroclinic orbit Homeomorphism Homoclinic orbit Hyperbolic point Inference Initial condition Instability Integrable system Invariant manifold Iteration Joint probability distribution LTI system theory Limit cycle Linear differential equation Logistic map Marginal distribution Moduli (physics) Multiplicative noise Noise (electronics) Nonlinear control Nonlinear system Ornstein–Uhlenbeck process Oscillation Parameter space Parameter Partial differential equation Perturbation function Phase plane Phase space Poisson distribution Probability density function Probability distribution Probability theory Probability Production–possibility frontier Relative velocity Scale factor Shear stress Spectral density Spectral gap Standard deviation Stochastic process Stochastic resonance Stochastic Stream function Surface stress Symbolic dynamics The Signal and the Noise Topological conjugacy Transfer function Variance Vorticity |
ISBN |
0-691-05094-5
1-4008-3250-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter 1. Introduction -- PART 1. FUNDAMENTALS -- Chapter 2. Transitions in Deterministic Systems and the Melnikov Function -- Chapter 3. Chaos in Deterministic Systems and the Melnikov Function -- Chapter 4. Stochastic Processes -- Chapter 5. Chaotic Transitions in Stochastic Dynamical Systems and the Melnikov Process -- PART 2. APPLICATIONS -- Chapter 6. Vessel Capsizing -- Chapter 7. Open-Loop Control of Escapes in Stochastically Excited Systems -- Chapter 8. Stochastic Resonance -- Chapter 9. Cutoff Frequency of Experimentally Generated Noise for a First-Order Dynamical System -- Chapter 10. Snap-Through of Transversely Excited Buckled Column -- Chapter 11. Wind-Induced Along-Shore Currents over a Corrugated Ocean Floor -- Chapter 12. The Auditory Nerve Fiber as a Chaotic Dynamical System -- Appendix A1 Derivation of Expression for the Melnikov Function -- Appendix A2 Construction of Phase Space Slice through Stable and Unstable Manifolds -- Appendix A3 Topological Conjugacy -- Appendix A4 Properties of Space ∑2 -- Appendix A5 Elements of Probability Theory -- Appendix A6 Mean Upcrossing Rate τu-1 for Gaussian Processes -- Appendix A7 Mean Escape Rate τ∊-1 for Systems Excited by White Noise -- References -- Index |
Record Nr. | UNINA-9910786748903321 |
Simiu Emil
![]() |
||
Princeton, New Jersey : , : Princeton University Press, , 2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Chaotic transitions in deterministic and stochastic dynamical systems : applications of Melnikov processes in engineering, physics, and neuroscience / / Emil Simiu |
Autore | Simiu Emil |
Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 2002 |
Descrizione fisica | 1 online resource (244 p.) |
Disciplina | 515/.352 |
Collana | Princeton Series in Applied Mathematics |
Soggetto topico |
Differentiable dynamical systems
Chaotic behavior in systems Stochastic systems |
Soggetto non controllato |
Affine transformation
Amplitude Arbitrarily large Attractor Autocovariance Big O notation Central limit theorem Change of variables Chaos theory Coefficient of variation Compound Probability Computational problem Control theory Convolution Coriolis force Correlation coefficient Covariance function Cross-covariance Cumulative distribution function Cutoff frequency Deformation (mechanics) Derivative Deterministic system Diagram (category theory) Diffeomorphism Differential equation Dirac delta function Discriminant Dissipation Dissipative system Dynamical system Eigenvalues and eigenvectors Equations of motion Even and odd functions Excitation (magnetic) Exponential decay Extreme value theory Flow velocity Fluid dynamics Forcing (recursion theory) Fourier series Fourier transform Fractal dimension Frequency domain Gaussian noise Gaussian process Harmonic analysis Harmonic function Heteroclinic orbit Homeomorphism Homoclinic orbit Hyperbolic point Inference Initial condition Instability Integrable system Invariant manifold Iteration Joint probability distribution LTI system theory Limit cycle Linear differential equation Logistic map Marginal distribution Moduli (physics) Multiplicative noise Noise (electronics) Nonlinear control Nonlinear system Ornstein–Uhlenbeck process Oscillation Parameter space Parameter Partial differential equation Perturbation function Phase plane Phase space Poisson distribution Probability density function Probability distribution Probability theory Probability Production–possibility frontier Relative velocity Scale factor Shear stress Spectral density Spectral gap Standard deviation Stochastic process Stochastic resonance Stochastic Stream function Surface stress Symbolic dynamics The Signal and the Noise Topological conjugacy Transfer function Variance Vorticity |
ISBN |
0-691-05094-5
1-4008-3250-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter 1. Introduction -- PART 1. FUNDAMENTALS -- Chapter 2. Transitions in Deterministic Systems and the Melnikov Function -- Chapter 3. Chaos in Deterministic Systems and the Melnikov Function -- Chapter 4. Stochastic Processes -- Chapter 5. Chaotic Transitions in Stochastic Dynamical Systems and the Melnikov Process -- PART 2. APPLICATIONS -- Chapter 6. Vessel Capsizing -- Chapter 7. Open-Loop Control of Escapes in Stochastically Excited Systems -- Chapter 8. Stochastic Resonance -- Chapter 9. Cutoff Frequency of Experimentally Generated Noise for a First-Order Dynamical System -- Chapter 10. Snap-Through of Transversely Excited Buckled Column -- Chapter 11. Wind-Induced Along-Shore Currents over a Corrugated Ocean Floor -- Chapter 12. The Auditory Nerve Fiber as a Chaotic Dynamical System -- Appendix A1 Derivation of Expression for the Melnikov Function -- Appendix A2 Construction of Phase Space Slice through Stable and Unstable Manifolds -- Appendix A3 Topological Conjugacy -- Appendix A4 Properties of Space ∑2 -- Appendix A5 Elements of Probability Theory -- Appendix A6 Mean Upcrossing Rate τu-1 for Gaussian Processes -- Appendix A7 Mean Escape Rate τ∊-1 for Systems Excited by White Noise -- References -- Index |
Record Nr. | UNINA-9910827211303321 |
Simiu Emil
![]() |
||
Princeton, New Jersey : , : Princeton University Press, , 2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Contributions to the Theory of Nonlinear Oscillations (AM-29), Volume II / / Solomon Lefschetz |
Autore | Lefschetz Solomon |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (128 pages) : illustrations |
Disciplina | 531.3 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Oscillations |
Soggetto non controllato |
Addition
Analytic function Approximation Arc length Asymptotic expansion Big O notation Bijection Calculation Canonical form Cartesian coordinate system Characteristic equation Characteristic exponent Circumference Clockwise Coefficient matrix Coefficient Concentric Continuous function Contradiction Coordinate system Determinant Differential equation Divisor Dynamical system Equation Existential quantification Exterior (topology) First variation Geometry Homotopy Initial condition Integer Intersection (set theory) Interval (mathematics) Isolated point Iteration Limit cycle Limit set Linear differential equation Linear equation Main diagonal Mathematician Matrix (mathematics) Matrix coefficient Monotonic function Natural number Nonlinear system Parameter Partial derivative Periodic function Phase plane Phase portrait Polar coordinate system Polynomial Projective plane Quadratic transformation Requirement Saddle point Separatrix (mathematics) Sequence Special case Square matrix Statistical hypothesis testing Structural stability Subset Suggestion Theorem Theory Three-dimensional space (mathematics) Time derivative Topology Trigonometric polynomial Uniqueness theorem Unit vector Variable (mathematics) Vector field Velocity Without loss of generality |
ISBN | 1-4008-8270-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface / Lefschetz, Solomon -- Contents -- I. Van der Pol's Equation for Relaxation Oscillations / Cartwright, M. L. -- II. Perturbations of Linear Systems with Constant Coefficients Possessing Periodic Solutions / Coddington, E. A. / Levinson, N. -- III. Dynamical Systems with Stable Structures / DeBaggis, H. F. -- IV. Notes on Differential Equations / Lefsehetz, Solomon -- V. A method for the Calculation of Limit Cycles by Successive Approximation / McCarthy, John -- VI. Asymptotic Expansions of Solutions of Systems of Ordinary Linear Differential Equations Containing a Parameter / Turrittin, H. L. |
Record Nr. | UNINA-9910154745103321 |
Lefschetz Solomon
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Contributions to the Theory of Nonlinear Oscillations (AM-36), Volume III / / Solomon Lefschetz |
Autore | Lefschetz Solomon |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (300 pages) : illustrations |
Disciplina | 531.3 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Oscillations |
Soggetto non controllato |
Addition
Almost periodic function Analytic function Analytic manifold Asymptote Asymptotic analysis Banach space Basis (linear algebra) Betti number Big O notation Boundary (topology) Boundary value problem Boundedness Calculation Cartesian coordinate system Characteristic equation Characteristic exponent Coefficient matrix Coefficient Combination Complex number Complex space Connected space Continuous function Counterexample Curve Degeneracy (mathematics) Degrees of freedom (statistics) Derivative Determinant Differentiable function Differential equation Dissipative system Eigenvalues and eigenvectors Equation Existence theorem Existential quantification Exterior (topology) First variation Fixed-point theorem Fundamental theorem Geometry Half-space (geometry) Homeomorphism Homotopy Hyperbolic sector Identity matrix Imaginary number Implicit function Infimum and supremum Integral curve Interior (topology) Intersection (set theory) Interval (mathematics) Invertible matrix Jacobian matrix and determinant Jordan curve theorem Limit cycle Limit point Limit set Line at infinity Linear approximation Linear differential equation Linear equation Linear map Lipschitz continuity Matrix (mathematics) Monotonic function N-vector Nonlinear system Ordinary differential equation Parameter Parametric equation Parametrization Partial derivative Periodic function Phase plane Phase space Point at infinity Polynomial Projective plane Quantity Saddle point Scientific notation Second derivative Separatrix (mathematics) Sign (mathematics) Simultaneous equations Singular perturbation Special case Submanifold Summation Tangent Taylor series Theorem Theory Topology Vector field Velocity Zero of a function |
ISBN | 1-4008-8217-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- I. A ROTATED VECTOR APPROACH TO THE PROBLEM OP STABILITY OP SOLUTIONS OF PENDULUM-TYPE EQUATIONS / Seifert, George -- II. ASYMPTOTICALLY AUTONOMOUS DIFFERENTIAL SYSTEMS / Markus, L. -- III. NONLINEAR DIFFERENTIAL EQUATIONS SYSTEMS / Pinney, Edmund -- IV. ON A NON-LINEAR DIFFERENTIAL EQUATION CONTAINING A SMALL PARAMETER / Haas, Violet B. -- V. CRITICAL POINTS AT INFINITY AND FORCED OSCILLATION / Gomory, Ralph E. -- VI. ON CERTAIN CRITICAL POINTS OF A DIFFERENTIAL SYSTEM IN THE PLANE / Barocio, Samuel -- VII. ON THE TOTAL NUMBER OF SINGULAR POINTS AND LIMIT CYCLES OF A DIFFERENTIAL EQUATION / Haas, Felix -- VIII. BANACH SPACES AND THE PERTURBATION OF ORDINARY DIFFERENTIAL EQUATIONS / Hufford, George -- IX. A FIXED POINT THEOREM / Kyner, Walter T. -- X. PERTURBATION THEOREMS FOR NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS / Diliberto, S. P. / Hufford, G. -- XI. A NOTE ON THE EXISTENCE OF PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS / Diliberto, S. P. / Marcus, M. D. -- XII. AN INVARIANT SURFACE THEOREM FOR A NON-DEGENERATE SYSTEM / Marcus, Marvin D. -- XIII. AN APPLICATION OP PERIODIC SURFACES (SOLUTION OF A SMALL DIVISOR PROBLEM) / Diliberto, Stephen P. -- XIV. REPEATING SOLUTIONS FOR A DEGENERATE SYSTEM / Marcus, Marvin D. -- XV. BOUNDS FOR PERIODS OF PERIODIC SOLUTIONS / Diliberto, Stephen P. -- XVI. ONE-DIMENSIONAL REPEATING CURVES IN THE NON-DEGENERATE CASE / Koosis, Paul -- Backmatter |
Record Nr. | UNINA-9910154750203321 |
Lefschetz Solomon
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|