Mathematical Aspects of Quantum Field Theories / Damien Calaque, Thomas Strobl editors
| Mathematical Aspects of Quantum Field Theories / Damien Calaque, Thomas Strobl editors |
| Pubbl/distr/stampa | Cham, : Springer, 2015 |
| Descrizione fisica | xxviii, 556 p. : ill. ; 24 cm |
| Soggetto topico |
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
14F43 - Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies) [MSC 2020] 53Zxx - Applications of differential geometry to sciences and engineering [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 81T15 - Perturbative methods of renormalization applied to problems in quantum field theory [MSC 2020] 81T40 - Two-dimensional field theories, conformal field theories, etc. in quantum mechanics [MSC 2020] 81T45 - Topological field theories in quantum mechanics [MSC 2020] |
| Soggetto non controllato |
Chern-Simons Theory
Factorization Algebras Factorization Homology Frobenius Algebras Grupoids Perturbative Quantum Field Theory Quantum Teichmueller Theory Supersymmetric Gauge Theories Topological Field Theories Witten-Reshetikhin-Turaev Invariants |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00133681 |
| Cham, : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mathematical Aspects of Quantum Field Theories / Damien Calaque, Thomas Strobl editors
| Mathematical Aspects of Quantum Field Theories / Damien Calaque, Thomas Strobl editors |
| Edizione | [Cham : Springer, 2015] |
| Pubbl/distr/stampa | xxviii, 556 p., : ill. ; 24 cm |
| Soggetto topico |
81-XX - Quantum theory [MSC 2020]
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 53Zxx - Applications of differential geometry to sciences and engineering [MSC 2020] 81T40 - Two-dimensional field theories, conformal field theories, etc. in quantum mechanics [MSC 2020] 81T45 - Topological field theories in quantum mechanics [MSC 2020] 81T15 - Perturbative methods of renormalization applied to problems in quantum field theory [MSC 2020] 14F43 - Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies) [MSC 2020] |
| Soggetto non controllato |
Chern-Simons Theory
Factorization Algebras Factorization Homology Frobenius Algebras Grupoids Perturbative Quantum Field Theory Quantum Teichmueller Theory Supersymmetric Gauge Theories Topological Field Theories Witten-Reshetikhin-Turaev Invariants |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0133681 |
| xxviii, 556 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mellin-Barnes Integrals : A Primer on Particle Physics Applications / Ievgen Dubovyk, Janusz Gluza, Gábor Somogyi
| Mellin-Barnes Integrals : A Primer on Particle Physics Applications / Ievgen Dubovyk, Janusz Gluza, Gábor Somogyi |
| Autore | Dubovyk, Ievgen |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xviii, 283 p. : ill. ; 24 cm |
| Altri autori (Persone) |
Gluza, Janusz
Somogyi, Gábor |
| Soggetto topico |
81-XX - Quantum theory [MSC 2020]
81Txx - Quantum field theory; related classical field theories [MSC 2020] |
| Soggetto non controllato |
Computer algebra systems
Feynman integrals Mellin-Barnes representations Numerical methods in perturbative QFT Perturbative Quantum Field Theory Phase space integration Special complex functions Symbolic summation and integration Virtual corrections |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00283621 |
Dubovyk, Ievgen
|
||
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Perturbative Algebraic Quantum Field Theory : an Introduction for Mathematicians / Kasia Rejzner
| Perturbative Algebraic Quantum Field Theory : an Introduction for Mathematicians / Kasia Rejzner |
| Autore | Rejzner, Kasia |
| Pubbl/distr/stampa | Cham, : Springer, 2016 |
| Descrizione fisica | xi, 180 p. : ill. ; 24 cm |
| Soggetto topico |
81-XX - Quantum theory [MSC 2020]
46L60 - Applications of selfadjoint operator algebras to physics [MSC 2020] 81R15 - Operator algebra methods applied to problems in quantum theory [MSC 2020] 00A79 (77-XX) - Physics [MSC 2020] 81T05 - Axiomatic quantum field theory; operator algebras [MSC 2020] 83C45 - Quantization of the gravitational field [MSC 2020] 81T15 - Perturbative methods of renormalization applied to problems in quantum field theory [MSC 2020] 81T10 - Model quantum field theories [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 81V17 - Gravitational interaction in quantum theory [MSC 2020] |
| Soggetto non controllato |
Algebraic Quantum Field Theory
Batalin-Vilkoviski Formalism Effective quantum gravity Epstein-Glaser Method Gauge Theory Locally Covariant Quantum Field Theory Mathematical Foundations of Quantum Field Theory Perturbative Quantum Field Theory Quantum Field Theory on curved spacetimes Theory of Scalar field |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0168117 |
Rejzner, Kasia
|
||
| Cham, : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Perturbative Algebraic Quantum Field Theory : an Introduction for Mathematicians / Kasia Rejzner
| Perturbative Algebraic Quantum Field Theory : an Introduction for Mathematicians / Kasia Rejzner |
| Autore | Rejzner, Kasia |
| Pubbl/distr/stampa | Cham, : Springer, 2016 |
| Descrizione fisica | xi, 180 p. : ill. ; 24 cm |
| Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
46L60 - Applications of selfadjoint operator algebras to physics [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81R15 - Operator algebra methods applied to problems in quantum theory [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] 81T05 - Axiomatic quantum field theory; operator algebras [MSC 2020] 81T10 - Model quantum field theories [MSC 2020] 81T15 - Perturbative methods of renormalization applied to problems in quantum field theory [MSC 2020] 81V17 - Gravitational interaction in quantum theory [MSC 2020] 83C45 - Quantization of the gravitational field [MSC 2020] |
| Soggetto non controllato |
Algebraic Quantum Field Theory
Batalin-Vilkoviski Formalism Effective quantum gravity Epstein-Glaser Method Gauge Theory Locally Covariant Quantum Field Theory Mathematical Foundations of Quantum Field Theory Perturbative Quantum Field Theory Quantum Field Theory Theory of Scalar field |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00168117 |
Rejzner, Kasia
|
||
| Cham, : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||