Calculus on Heisenberg Manifolds. (AM-119), Volume 119 / / Richard Beals, Peter Charles Greiner
| Calculus on Heisenberg Manifolds. (AM-119), Volume 119 / / Richard Beals, Peter Charles Greiner |
| Autore | Beals Richard |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (208 pages) |
| Disciplina | 515.7/242 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Hypoelliptic operators
Calculus Differentiable manifolds |
| Soggetto non controllato |
Adjoint
Affine transformation Approximation Asymptotic expansion Calculation Codimension Complex geometry Complex manifold Computation Convolution De Rham cohomology Derivative Differentiable manifold Differential operator Dimension (vector space) Estimation Fourier integral operator Fourier transform Function space Heat equation Heisenberg group Hilbert space Homogeneous function Hypoelliptic operator Identity element Integration by parts Invertible matrix Manifold Nilpotent group Parametrix Partial differential equation Pointwise product Pointwise Polynomial Principal part Pseudo-differential operator Riemannian manifold Self-adjoint Several complex variables Singular integral Smoothing Structure constants Subset Summation Tangent bundle Theorem Transpose Unit circle Vector field |
| ISBN | 1-4008-8239-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Introduction -- Chapter 1. The Model Operators -- Chapter 2. Inverting the Model Operator -- Chapter 3. Pseudodifferential Operators on Heisenberg Manifolds -- Chapter 4. Application to the ∂̅b - Complex -- Bibliography -- Index of Terminology -- List of Notation |
| Record Nr. | UNINA-9910154747103321 |
Beals Richard
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cosmology in (2 + 1) -Dimensions, Cyclic Models, and Deformations of M2,1. (AM-121), Volume 121 / / Victor Guillemin
| Cosmology in (2 + 1) -Dimensions, Cyclic Models, and Deformations of M2,1. (AM-121), Volume 121 / / Victor Guillemin |
| Autore | Guillemin Victor |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (236 pages) : illustrations |
| Disciplina | 523.1/072/4 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Cosmology - Mathematical models
Geometry, Differential Lorentz transformations |
| Soggetto non controllato |
Automorphism
Bijection C0 Canonical form Canonical transformation Cauchy distribution Causal structure Cayley transform Codimension Cohomology Cokernel Compactification (mathematics) Complexification (Lie group) Computation Conformal geometry Conformal map Conformal symmetry Connected sum Contact geometry Corank Covariant derivative Covering space Deformation theory Diagram (category theory) Diffeomorphism Differentiable manifold Differential operator Dimension (vector space) Einstein field equations Equation Euler characteristic Existential quantification Fiber bundle Fibration Floquet theory Four-dimensional space Fourier integral operator Fourier transform Fundamental group Geodesic Hamilton–Jacobi equation Hilbert space Holomorphic function Holomorphic vector bundle Hyperfunction Hypersurface Integral curve Integral geometry Integral transform Intersection (set theory) Invertible matrix K-finite Lagrangian (field theory) Lie algebra Light cone Linear map Manifold Maxima and minima Minkowski space Module (mathematics) Notation One-parameter group Parametrix Parametrization Principal bundle Product metric Pseudo-differential operator Quadratic equation Quadratic form Quadric Radon transform Riemann surface Riemannian manifold Seifert fiber space Sheaf (mathematics) Siegel domain Simply connected space Submanifold Submersion (mathematics) Support (mathematics) Surjective function Symplectic manifold Symplectic vector space Symplectomorphism Tangent space Tautology (logic) Tensor product Theorem Topological space Topology Two-dimensional space Unit vector Universal enveloping algebra Variable (mathematics) Vector bundle Vector field Vector space Verma module Volume form X-ray transform |
| ISBN | 1-4008-8241-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Foreword -- Part I. A relativistic approach to Zoll phenomena -- Part II. The general theory of Zollfrei deformations -- Part III. Zollfrei deformations of M2,1 -- Part IV. The generalized x-ray transform -- Part V. The Floquet theory -- Bibliography |
| Record Nr. | UNINA-9910154746903321 |
Guillemin Victor
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
From Ordinary to Partial Differential Equations / Giampiero Esposito
| From Ordinary to Partial Differential Equations / Giampiero Esposito |
| Autore | Esposito, Giampiero |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xxi, 432 p. ; 24 cm |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35S05 - Pseudodifferential operators as generalizations of partial differential operators [MSC 2020] 35K05 - Heat equation [MSC 2020] 34-XX - Ordinary differential equations [MSC 2020] 35L70 - Second-order hyperbolic equations [MSC 2020] 11S40 - Zeta functions and $L$-functions [MSC 2020] 35S30 - Fourier integral operators applied to PDEs [MSC 2020] 35A08 - Fundamental solutions to PDEs [MSC 2020] 35L10 - Second-order hyperbolic equations [MSC 2020] 35A17 - Parametrices in context of PDEs [MSC 2020] |
| Soggetto non controllato |
Characteristic conoid
Fuchsian functions Fundamental solutions Green's Function Kirchhoff formulae Ordinary differential equations Parametrix Partial differential equations Pseudoholomorphic functions Riemann's zeta function |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0123798 |
Esposito, Giampiero
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From Ordinary to Partial Differential Equations / Giampiero Esposito
| From Ordinary to Partial Differential Equations / Giampiero Esposito |
| Autore | Esposito, Giampiero |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xxi, 432 p. ; 24 cm |
| Soggetto topico |
11S40 - Zeta functions and $L$-functions [MSC 2020]
34-XX - Ordinary differential equations [MSC 2020] 35-XX - Partial differential equations [MSC 2020] 35A08 - Fundamental solutions to PDEs [MSC 2020] 35A17 - Parametrices in context of PDEs [MSC 2020] 35K05 - Heat equation [MSC 2020] 35L10 - Second-order hyperbolic equations [MSC 2020] 35L70 - Second-order hyperbolic equations [MSC 2020] 35S05 - Pseudodifferential operators as generalizations of partial differential operators [MSC 2020] 35S30 - Fourier integral operators applied to PDEs [MSC 2020] |
| Soggetto non controllato |
Characteristic conoid
Fuchsian functions Fundamental solutions Green's Function Kirchhoff formulae Ordinary Differential Equations Parametrix Partial Differential Equations Pseudoholomorphic functions Riemann's zeta function |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00123798 |
Esposito, Giampiero
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau
| The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau |
| Autore | Bismut Jean-Michel |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, : Princeton University Press, 2008 |
| Descrizione fisica | 1 online resource (378 p.) |
| Disciplina | 515/.7242 |
| Altri autori (Persone) | LebeauGilles |
| Collana | Annals of mathematics studies |
| Soggetto topico |
Differential equations, Hypoelliptic
Laplacian operator Metric spaces |
| Soggetto non controllato |
Alexander Grothendieck
Analytic function Asymptote Asymptotic expansion Berezin integral Bijection Brownian dynamics Brownian motion Chaos theory Chern class Classical Wiener space Clifford algebra Cohomology Combination Commutator Computation Connection form Coordinate system Cotangent bundle Covariance matrix Curvature tensor Curvature De Rham cohomology Derivative Determinant Differentiable manifold Differential operator Dirac operator Direct proof Eigenform Eigenvalues and eigenvectors Ellipse Embedding Equation Estimation Euclidean space Explicit formula Explicit formulae (L-function) Feynman–Kac formula Fiber bundle Fokker–Planck equation Formal power series Fourier series Fourier transform Fredholm determinant Function space Girsanov theorem Ground state Heat kernel Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Hypoelliptic operator Integration by parts Invertible matrix Logarithm Malliavin calculus Martingale (probability theory) Matrix calculus Mellin transform Morse theory Notation Parameter Parametrix Parity (mathematics) Polynomial Principal bundle Probabilistic method Projection (linear algebra) Rectangle Resolvent set Ricci curvature Riemann–Roch theorem Scientific notation Self-adjoint operator Self-adjoint Sign convention Smoothness Sobolev space Spectral theory Square root Stochastic calculus Stochastic process Summation Supertrace Symmetric space Tangent space Taylor series Theorem Theory Torus Trace class Translational symmetry Transversality (mathematics) Uniform convergence Variable (mathematics) Vector bundle Vector space Wave equation |
| ISBN |
1-282-45837-X
9786612458378 1-4008-2906-2 |
| Classificazione | SK 620 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles -- Chapter 2. The hypoelliptic Laplacian on the cotangent bundle -- Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel -- Chapter 4. Hypoelliptic Laplacians and odd Chern forms -- Chapter 5. The limit as t → +∞ and b → 0 of the superconnection forms -- Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics -- Chapter 7. The hypoelliptic torsion forms of a vector bundle -- Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula -- Chapter 9. A comparison formula for the Ray-Singer metrics -- Chapter 10. The harmonic forms for b → 0 and the formal Hodge theorem -- Chapter 11. A proof of equation (8.4.6) -- Chapter 12. A proof of equation (8.4.8) -- Chapter 13. A proof of equation (8.4.7) -- Chapter 14. The integration by parts formula -- Chapter 15. The hypoelliptic estimates -- Chapter 16. Harmonic oscillator and the J0 function -- Chapter 17. The limit of A'2φb,±H as b → 0 -- Bibliography -- Subject Index -- Index of Notation |
| Record Nr. | UNINA-9910781084803321 |
Bismut Jean-Michel
|
||
| Princeton, : Princeton University Press, 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Semiclassical soliton ensembles for the focusing nonlinear Schrodinger equation [[electronic resource] /] / Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller
| Semiclassical soliton ensembles for the focusing nonlinear Schrodinger equation [[electronic resource] /] / Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller |
| Autore | Kamvissis Spyridon |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, NJ, : Princeton University Press, c2003 |
| Descrizione fisica | 1 online resource (280 p.) |
| Disciplina | 530.12/4 |
| Altri autori (Persone) |
McLaughlinK. T-R <1969-> (Kenneth T-R)
MillerPeter D <1967-> (Peter David) |
| Collana | Annals of mathematics studies |
| Soggetto topico |
Schrodinger equation
Wave mechanics |
| Soggetto non controllato |
Abelian integral
Analytic continuation Analytic function Ansatz Approximation Asymptote Asymptotic analysis Asymptotic distribution Asymptotic expansion Banach algebra Basis (linear algebra) Boundary (topology) Boundary value problem Bounded operator Calculation Cauchy's integral formula Cauchy's integral theorem Cauchy's theorem (geometry) Cauchy–Riemann equations Change of variables Coefficient Complex plane Cramer's rule Degeneracy (mathematics) Derivative Diagram (category theory) Differentiable function Differential equation Differential operator Dirac equation Disjoint union Divisor Eigenfunction Eigenvalues and eigenvectors Elliptic integral Energy minimization Equation Euler's formula Euler–Lagrange equation Existential quantification Explicit formulae (L-function) Fourier transform Fredholm theory Function (mathematics) Gauge theory Heteroclinic orbit Hilbert transform Identity matrix Implicit function theorem Implicit function Infimum and supremum Initial value problem Integrable system Integral curve Integral equation Inverse problem Jacobian matrix and determinant Kerr effect Laurent series Limit point Line (geometry) Linear equation Linear space (geometry) Logarithmic derivative Lp space Minor (linear algebra) Monotonic function Neumann series Normalization property (abstract rewriting) Numerical integration Ordinary differential equation Orthogonal polynomials Parameter Parametrix Paraxial approximation Parity (mathematics) Partial derivative Partial differential equation Perturbation theory (quantum mechanics) Perturbation theory Pole (complex analysis) Polynomial Probability measure Quadratic differential Quadratic programming Radon–Nikodym theorem Reflection coefficient Riemann surface Simultaneous equations Sobolev space Soliton Special case Taylor series Theorem Theory Trace (linear algebra) Upper half-plane Variational method (quantum mechanics) Variational principle WKB approximation |
| ISBN |
1-299-44345-1
1-4008-3718-9 |
| Classificazione | SI 830 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Figures and Tables -- Preface -- Chapter 1. Introduction and Overview -- Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons -- Chapter 3. Semiclassical Soliton Ensembles -- Chapter 4. Asymptotic Analysis of the Inverse Problem -- Chapter 5. Direct Construction of the Complex Phase -- Chapter 6. The Genus - Zero Ansatz -- Chapter 7. The Transition to Genus Two -- Chapter 8. Variational Theory of the Complex Phase -- Chapter 9. Conclusion and Outlook -- Appendix A. H¨older Theory of Local Riemann-Hilbert Problems -- Appendix B. Near-Identity Riemann-Hilbert Problems in L2 -- Bibliography -- Index |
| Record Nr. | UNINA-9910791959003321 |
Kamvissis Spyridon
|
||
| Princeton, NJ, : Princeton University Press, c2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||