top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Iterative Methods for Solving Nonlinear Equations and Systems
Iterative Methods for Solving Nonlinear Equations and Systems
Autore Soleymani Fazlollah
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (494 p.)
Soggetto non controllato ?-continuity condition
accretive operators
asymptotic error constant
attractor basin
banach space
Banach space
basin of attraction
basins of attraction
Chebyshev-Halley-type
computational efficiency
computational efficiency index
computational order of convergence
conjugate gradient method
convex constraints
convexity
divided difference operator
drazin inverse
dynamics
efficiency index
engineering applications
error bound
finite difference (FD)
fixed point theorem
fourth order iterative methods
Fréchet derivative
Fredholm integral equation
Frédholm integral equation
generalized inverse
global convergence
heston model
high order
higher order
higher order method
higher order of convergence
Hilbert space
Hull-White
integral equation
intersection
iteration scheme
iterative method
iterative methods
iterative process
Jarratt method
Kantorovich hypothesis
King's family
Kung-Traub conjecture
least square problem
Lipschitz condition
local convergence
Moore-Penrose
multi-valued quasi-nonexpasive mappings
multiple roots
multiple zeros
multiple-root finder
multipoint iterations
multipoint iterative methods
n-dimensional Euclidean space
Newton method
Newton-HSS method
Newton-like method
Newton-type methods
Newton's iterative method
Newton's method
Newton's second order method
non-differentiable operator
non-linear equation
nonlinear equation
nonlinear equations
nonlinear HSS-like method
nonlinear models
nonlinear monotone equations
nonlinear operator equation
nonlinear systems
numerical experiment
optimal iterative methods
optimal methods
optimal order
option pricing
order of convergence
Padé approximation
parametric curve
PDE
Picard-HSS method
planar algebraic curve
point projection
Potra-Pták method
projection method
purely imaginary extraneous fixed point
R-order
radius of convergence
rate of convergence
rectangular matrices
semi-local convergence
semilocal convergence
signal and image processing
signal processing
sixteenth order convergence method
sixteenth-order optimal convergence
smooth and nonsmooth operators
split variational inclusion problem
Steffensen's method
system of nonlinear equations
systems of nonlinear equations
the improved curvature circle algorithm
variational inequality problem
weight function
with memory
ISBN 3-03921-941-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367739103321
Soleymani Fazlollah  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Notes on the infinity Laplace equation / Peter Lindqvist
Notes on the infinity Laplace equation / Peter Lindqvist
Autore Lindquist, Peter
Pubbl/distr/stampa [Cham], : Springer, 2016
Descrizione fisica IX, 68 p. : ill. ; 24 cm
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J60 - Nonlinear elliptic equations [MSC 2020]
Soggetto non controllato Degenerate Elliptic equations
Fully non-linear equations
Lipschitz extensions
Ordinary differential equations
PDE
Partial differential equations
The infinity Laplace operator
Viscosity solutions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0115100
Lindquist, Peter  
[Cham], : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Notes on the infinity Laplace equation / Peter Lindqvist
Notes on the infinity Laplace equation / Peter Lindqvist
Autore Lindquist, Peter
Pubbl/distr/stampa [Cham], : Springer, 2016
Descrizione fisica IX, 68 p. : ill. ; 24 cm
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J60 - Nonlinear elliptic equations [MSC 2020]
Soggetto non controllato Degenerate Elliptic equations
Fully nonlinear equations
Lipschitz extensions
Ordinary Differential Equations
PDE
Partial Differential Equations
The infinity Laplace operator
Viscosity solutions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00115100
Lindquist, Peter  
[Cham], : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Synthesis of Flavonoids or Other Nature-Inspired Small Molecules
Synthesis of Flavonoids or Other Nature-Inspired Small Molecules
Autore Ribaudo Giovanni
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (82 p.)
Soggetto topico Research and information: general
Soggetto non controllato (+)-camphor
1,2,3-triazole
7-hydroxy-2H-chromen-2-one
ADMET
aminoquinoline
anticancer
anticonvulsant activity
antidiabetic
benzylidene derivative
C. dichotoma
Clusiaceae
coumarin
curcumin analog
DFT calculation
docking
flavonoids
Garcinia porrecta
hybrid compound
hydrazone
kokosanolide
Lansium domesticum
lupeol derivative
MCF-7
Meliaceae
molecular modeling
n/a
O-acylation reaction
organic synthesis
Oxone®
PDE
photophysical properties
quercetin
semi-synthetic
sildenafil
steady-state fluorescence
technology
terpenoid
tetranortriterpenoid
triterpene onoceranoid
valproic acid
xanthone
α-amylase
α-glucosidase
α-glucosidase inhibition
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557615703321
Ribaudo Giovanni  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui