New Perspectives on the Theory of Inequalities for Integral and Sum / Nazia Irshad ... [et al.] |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
Descrizione fisica | xiii, 308 p. : ill. ; 24 cm |
Soggetto topico |
26D15 - Inequalities for sums, series and integrals [MSC 2020]
26-XX - Real functions [MSC 2020] |
Soggetto non controllato |
Abel-Gontscharoff interpolating polynomials
Bernstein polynomials Bounded differentiable functions Cebysev type identity and inequality Cebyšev functional Completely monotonic functions Convex functions Copula Exponentially convex functions Fink identity Fubini’s theorem Function with nondecreasing increments Greens Functions Gruss inequality Hölder’s Inequality Jensen-Boas inequality Korkine’s identity Levinson’s-type inequality Ostrowski inequality |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0274424 |
Cham, : Birkhäuser, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
New Perspectives on the Theory of Inequalities for Integral and Sum / Nazia Irshad ... [et al.] |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
Descrizione fisica | xiii, 308 p. : ill. ; 24 cm |
Soggetto topico |
26-XX - Real functions [MSC 2020]
26D15 - Inequalities for sums, series and integrals [MSC 2020] |
Soggetto non controllato |
Abel-Gontscharoff interpolating polynomials
Bernstein polynomials Bounded differentiable functions Cebysev type identity and inequality Cebyšev functional Completely monotonic functions Convex functions Copula Exponentially convex functions Fink identity Fubini’s theorem Function with nondecreasing increments Greens Functions Gruss inequality Hölder’s Inequality Jensen-Boas inequality Korkine’s identity Levinson’s-type inequality Ostrowski inequality |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00274424 |
Cham, : Birkhäuser, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Symmetry in the Mathematical Inequalities |
Autore | Minculete Nicusor |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (276 p.) |
Soggetto topico |
Research & information: general
Geography |
Soggetto non controllato |
Ostrowski inequality
Hölder's inequality power mean integral inequality n-polynomial exponentially s-convex function weight coefficient Euler-Maclaurin summation formula Abel's partial summation formula half-discrete Hilbert-type inequality upper limit function Hermite-Hadamard inequality (p, q)-calculus convex functions trapezoid-type inequality fractional integrals functions of bounded variations (p,q)-integral post quantum calculus convex function a priori bounds 2D primitive equations continuous dependence heat source Jensen functional A-G-H inequalities global bounds power means Simpson-type inequalities thermoelastic plate Phragmén-Lindelöf alternative Saint-Venant principle biharmonic equation symmetric function Schur-convexity inequality special means Shannon entropy Tsallis entropy Fermi-Dirac entropy Bose-Einstein entropy arithmetic mean geometric mean Young's inequality Simpson's inequalities post-quantum calculus spatial decay estimates Brinkman equations midpoint and trapezoidal inequality Simpson's inequality harmonically convex functions Simpson inequality (n,m)-generalized convexity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910576872203321 |
Minculete Nicusor | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|