top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1: Advances in Photonics Integrated Circuits, LASER and Applications : Proceedings of PHOTONICS 2023 : Volume 1 / Varun Raghunathan, Ambarish Ghosh, Jaya Prakash editors
1: Advances in Photonics Integrated Circuits, LASER and Applications : Proceedings of PHOTONICS 2023 : Volume 1 / Varun Raghunathan, Ambarish Ghosh, Jaya Prakash editors
Autore International Conference on Photonics : 2023
Pubbl/distr/stampa Singapore, : Springer, 2024
Descrizione fisica x, 146 p. : ill. ; 24 cm
Soggetto non controllato Bioimaging
Biophotonics
Fabrication Techniques
Fibers and Sensors
Lasers
Nanophotonics
Networks
Optical Communication
Optical Metrology and Instrumentation
Optoelectronics
Optofluidics
Photonic Integrated Circuits
Photonics
Quantum Optics
Quantum optics and photonics
​Non-linear and ultrafast photonics
​Novel Optical Materials
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00301690
International Conference on Photonics : 2023  
Singapore, : Springer, 2024
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
2: Advances in Fibers, Optical Sensors, Optical Communications and Networks : Proceedings of PHOTONICS 2023 : Volume 2 / Varun Raghunathan, Tapajyoti Das Gupta, Sebabrata Mukherjee editors
2: Advances in Fibers, Optical Sensors, Optical Communications and Networks : Proceedings of PHOTONICS 2023 : Volume 2 / Varun Raghunathan, Tapajyoti Das Gupta, Sebabrata Mukherjee editors
Autore International Conference on Photonics : 2023
Pubbl/distr/stampa Singapore, : Springer, 2024
Descrizione fisica xvi, 239 p. : ill. ; 24 cm
Soggetto non controllato Bioimaging
Biophotonics
Fibers and Sensors
Nanophotonics
Networks
Optical Communication
Optical Metrology and Instrumentation
Optoelectronics
Optofluidics
Photonic Integrated Circuits
Photonics
Quantum Optics
​Laser and Applications
​Non-linear and ultrafast photonics
​Novel Optical Materials
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00301686
International Conference on Photonics : 2023  
Singapore, : Springer, 2024
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
4: Advances in Nano-Photonics and Quantum Optics : Proceedings of PHOTONICS 2023 : Volume 4 / Manukumara Manjappa ... [et al.] editors
4: Advances in Nano-Photonics and Quantum Optics : Proceedings of PHOTONICS 2023 : Volume 4 / Manukumara Manjappa ... [et al.] editors
Autore International Conference on Photonics : 2023
Pubbl/distr/stampa Singapore, : Springer, 2024
Descrizione fisica xii, 127 p. : ill. ; 24 cm
Soggetto non controllato Biophotonics and Bioimaging
Fibers and Sensors
Nanophotonics
Optical Communication and Networks
Optical Metrology and Instrumentation
Optoelectronics
Optofluidics
Photonic Integrated Circuits
Quantum optics and photonics
​Laser and Applications
​Non-linear and ultrafast photonics
​Novel Optical Materials and Fabrication Technique
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00301687
International Conference on Photonics : 2023  
Singapore, : Springer, 2024
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Applications of Laser Ablation : Thin Film Deposition, Nanomaterial Synthesis and Surface Modification / / edited by Dongfang Yang
Applications of Laser Ablation : Thin Film Deposition, Nanomaterial Synthesis and Surface Modification / / edited by Dongfang Yang
Autore Dongfang Yang
Pubbl/distr/stampa IntechOpen, 2016
Descrizione fisica 1 online resource (428 pages) : illustrations
Disciplina 621.3
Soggetto topico Laser ablation
Soggetto non controllato Physical Sciences
Engineering and Technology
Optoelectronics
Physics
Optics and Lasers
ISBN 953-51-4129-5
953-51-2812-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Applications of laser ablation
Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification
Record Nr. UNINA-9910169205903321
Dongfang Yang  
IntechOpen, 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinspired Superhydrophobic Nano- and Microstructured Surfaces for Drag Reduction and Optoelectronics
Bioinspired Superhydrophobic Nano- and Microstructured Surfaces for Drag Reduction and Optoelectronics
Autore Vüllers Felix
Pubbl/distr/stampa KIT Scientific Publishing, 2018
Descrizione fisica 1 online resource (VII, 155 p. p.)
Collana Schriften des Instituts für Mikrostrukturtechnik am Karlsruher Institut für Technologie / Hrsg.: Institut für Mikrostrukturtechnik
Soggetto topico Technology: general issues
Soggetto non controllato Air-retention
Biomimetic
Bionik
Heißprägen
Hot embossing
Lufthaltung
Optoelectronics
Optoelektronik
Superhydrophobicity
Superhydrophobiztät
ISBN 1000084178
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346952003321
Vüllers Felix  
KIT Scientific Publishing, 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coherence and Ultrashort Pulse Laser Emission / / edited by F. J. Duarte
Coherence and Ultrashort Pulse Laser Emission / / edited by F. J. Duarte
Autore F. J. Duarte
Edizione [1st ed.]
Pubbl/distr/stampa IntechOpen, 2010
Descrizione fisica 1 online resource (700 pages)
Disciplina 535.2
Soggetto topico Coherence (Optics)
Soggetto non controllato Physical Sciences
Engineering and Technology
Optoelectronics
Physics
Optics and Lasers
ISBN 953-51-4538-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910138255903321
F. J. Duarte  
IntechOpen, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to infrared and electro-optical systems / / Ronald G. Driggers, Melvin H. Friedman, and John W. Devitt
Introduction to infrared and electro-optical systems / / Ronald G. Driggers, Melvin H. Friedman, and John W. Devitt
Autore Driggers Ronald G.
Edizione [Third edition.]
Pubbl/distr/stampa Boston, MA : , : Artech House, , [2022]
Descrizione fisica 1 online resource (739 pages)
Disciplina 621.36
Soggetto topico Electrooptical devices
Electrooptics
Infrared technology
Soggetto non controllato Optoelectronics
Technology & Engineering
ISBN 1-63081-833-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Introduction to Infrared and Electro-Optical Systems Third Edition -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Introduction to Imaging -- 1.2 Infrared and EO Systems -- 1.3 Wavelength Dependencies -- 1.4 Typical EO Scenario -- 1.5 Typical Infrared Scenario -- 1.6 Analytical Parameters -- 1.7 Sensitivity and Resolution -- 1.8 Linear Systems Approach -- 1.9 Summary -- 1.10 Guide to the References -- References -- Chapter 2 Mathematics -- 2.1 Complex Functions -- 2.2 Common One-Dimensional Functions -- 2.3 The 2-D Functions -- 2.4 Convolution and Correlation -- 2.5 The Fourier Transform -- 2.6 Fourier Transform Properties -- 2.7 Transform Pairs and Delta Function Properties -- 2.8 Probability -- 2.9 Important Examples -- 2.10 Guide to the References -- References -- Selected Bibliography -- Software -- Chapter 3 Linear Shift-Invariant Systems -- 3.1 Linear Systems -- 3.2 Shift Invariance -- 3.3 Basics of LSI Systems -- 3.4 Impulse Response -- 3.5 Transfer Function -- 3.6 System PSF and MTF Versus Component PSF and MTF -- 3.7 Spatial Sampling -- 3.8 Spatial Sampling and Resolution -- 3.9 Sampled Imaging Systems -- 3.10 Guide to the References -- References -- Selected Bilbiography -- Chapter 4 Diffraction -- 4.1 Electromagnetic Waves -- 4.2 Coherence -- 4.3 Fresnel and Fraunhofer Diffraction from an Aperture -- 4.3.1 Fresnel Diffraction -- 4.3.2 Fraunhofer Diffraction -- 4.4 Fraunhofer Diffraction from a Thin Lens -- 4.5 Thin Lens Optical System Diffraction PSF -- 4.6 Thin Lens Diffraction MTF -- 4.6.1 Modulation and MTF -- 4.6.2 Incoherent Diffraction MTF -- 4.6.3 Coherent Diffraction MTF -- 4.7 Calculation of Diffraction MTF -- 4.7.1 Circular Pupil: Coherent MTF -- 4.7.2 Circular Pupil: Incoherent MTF -- 4.8 Programs for Calculating Incoherent Diffraction MTF -- 4.9 Applications of Diffraction Theory.
4.9.1 Frequency Analysis of Optical Systems -- 4.9.2 Application to Geometric Optics -- 4.9.3 PSF of Distributed Aperture -- 4.9.4 Optical Image Processing -- 4.9.5 Stellar Interferometry -- 4.9.6 Apodization -- 4.9.7 Detector MTF from the Fraunhofer Diffraction Pattern -- 4.10 Light Goes Around Corners: The Poisson Spot -- References -- Chapter 5 Sources of Radiation -- 5.1 Radiometry and Photometry -- 5.1.1 Radiometric Units -- 5.1.2 Photometric Units -- 5.2 Infrared Targets and Backgrounds -- 5.2.1 Blackbody Radiation -- 5.2.2 Emissivity -- 5.2.3 Equivalent Differential Temperature (Delta T) -- 5.2.4 Apparent Differential Temperature (Apparent Delta T) -- 5.3 EO Targets and Backgrounds -- 5.3.1 External Sources -- 5.3.2 Contrast -- 5.4 Other Sensitivity Considerations -- 5.4.1 Bidirectional Reflectance Distribution Function -- 5.4.2 Color Considerations -- 5.5 Target and Background Spatial Characteristics -- 5.5.1 Bar Target Representation of Targets -- 5.5.2 Target Delta T and Characteristic Dimension -- 5.5.3 Summary of Target Characteristics -- 5.5.4 Clutter -- 5.5.5 Simulation of Target Characteristics -- 5.6 Typical Mid-Wave and Long-Wave Contrasts and Solar Effects -- References -- Selected Bibliography -- Chapter 6 Atmospherics -- 6.1 Atmospheric Components and Structure -- 6.2 Atmospheric Transmission -- 6.3 Absorption -- 6.4 Scattering -- 6.5 Path Radiance -- 6.6 Turbulence -- 6.7 Atmospheric Modulation Transfer Function -- 6.8 Models and Tools -- 6.9 Model Background Discussion -- 6.10 Some Practical Considerations -- References -- Chapter 7 Optics -- 7.1 Light Representation and the Optical Path Length -- 7.2 Reflection and Snell's Law of Refraction -- 7.3 The Thin Lens, Ray-Tracing Rules, and Gauss's Equation -- 7.4 Spherical Mirrors -- 7.5 Modeling the Thick Lens -- 7.6 Vergence -- 7.7 Multiple-Lens Systems -- 7.8 FOV.
7.9 Resolution -- 7.10 Aperture Stop, Pupils, and Rays -- 7.11 f-Number and Numerical Aperture -- 7.12 Telescopes and Angular Magnification -- 7.13 MTF -- 7.14 Aberrations -- 7.15 Optical Materials -- 7.16 Cold Stop and Cold Shield -- 7.17 A Typical Optical System -- 7.18 Diffraction Blur -- References -- Chapter 8 Detectors -- 8.1 Types of Detectors -- 8.1.1 Photon Detectors -- 8.1.2 Photoconductors -- 8.1.3 Photovoltaic -- 8.1.4 Photoemissive -- 8.1.5 Thermal Detectors -- 8.1.6 Bolometers -- 8.1.7 Pyroelectric Detectors -- 8.2 CCD and ROIC -- 8.2.1 CCD -- 8.2.2 Multiplexed Analog Readout -- 8.2.3 Column ADC ROIC or D-ROIC -- 8.3 Detector Sensitivity Analysis -- 8.3.1 Quantum Efficiency -- 8.3.2 Responsivity -- 8.3.3 Sensitivity -- 8.3.4 Detector Angular Subtense -- 8.3.5 FPA and Detector Noise (Including Detector 1/f Noise) -- 8.3.6 Dark Current and Rule'07 -- 8.3.7 1/f Noise -- 8.3.8 Photon Shot Noise -- 8.3.9 FPA and ROIC Noise (Including Fixed Pattern Noise) in Staring Systems -- 8.3.10 BLIP -- 8.4 EO Systems: Staring and Scanning Configurations -- 8.4.1 Raster Scan Systems -- 8.4.2 Linear Scan and TDI -- 8.4.3 Staring Systems: Focal Plane Arrays -- 8.5 Detector Transfer Functions -- 8.6 EO Detectors: Materials and Technology -- 8.6.1 MWIR and LWIR Photon Detectors -- 8.6.2 Far Infrared: VLWIR -- 8.6.3 Uncooled Bolometer -- 8.6.4 Visible and NIR -- 8.7 New and Emerging Infrared Detector Technology -- 8.7.1 Ultra-Large-Format Arrays and Small Pitch -- 8.7.2 Dual-Band Detectors (Third Generation) -- 8.7.2 Dual-Band Detectors (Third Generation) -- 8.7.3 Direct Bond Hybridization -- 8.7.4 Advanced ROIC Technology and Digital Pixel -- 8.7.5 Next Generation Imagers -- 8.7.6 Avalanche Photodiodes, Laser Range Gating, and Active and PassiveDetectors -- References -- Chapter 9 Electronics -- 9.1 Detector Circuits.
9.2 Conversion of Spatial and Temporal Frequencies -- 9.3 Electronics Transfer Function -- 9.4 Noise -- 9.4.1 Johnson Noise -- 9.4.2 1/f Noise -- 9.4.3 Shot Noise -- 9.5 MTF Boost Filter -- 9.6 Digital Filter MTF -- 9.7 CCDs -- 9.8 Uniformity Correction or NUC -- 9.9 Design and Construction of Camera Electronics -- References -- Chapter 10 Image Processing -- 10.1 Basics of Sampling Theory -- 10.2 Applications of Image Filtering -- 10.2.1 Localized Contrast Enhancement -- 10.2.2 Boost Filtering -- 10.2.3 Sensor Design Considerations -- 10.3 Super-Resolution Image Reconstruction -- 10.3.1 Image Acquisition: Microdither Scanner Versus Natural Jitter -- 10.3.2 Subpixel Shift Estimation -- 10.3.3 Image Reconstruction -- 10.3.4 Example and Performance Estimates -- 10.4 Image Fusion -- 10.4.1 Fusion Algorithms -- 10.5 Scene-Based NUC -- 10.6 Deep Learning -- 10.6.1 Super-Resolution -- 10.6.2 Contrast Enhancement -- 10.6.3 Image Fusion -- 10.6.4 Scene-Based NUC -- 10.7 Summary -- References -- Chapter 11 Displays, Human Perception, and Automatic Target Recognizers -- 11.1 Displays -- 11.2 CRTs -- 11.2.1 CRT Example Results -- 11.3 LEDs -- 11.4 LCDs -- 11.5 Plasma Displays -- 11.6 Emerging Display Technologies -- 11.7 Sampling and Display Processing -- 11.8 Human Perception and the Human Eye -- 11.9 MTF of the Eye -- 11.10 CTF of the Eye -- 11.11 Automatic Target Recognition -- References -- Chapter 12 Historical Performance Models -- 12.1 Introduction -- 12.2 Johnson Model Fundamentals -- 12.3 The MRT Model -- 12.4 The First FLIRs and Models -- 12.5 Model Improvements for Resolution and Noise -- 12.6 Incorporating Eye Contrast Limitations -- 12.7 Model Improvement to Add Sampling -- 12.8 Other Improvements Prior to the TTP Metric -- 12.9 The TRM3 Model -- 12.10 Triangle Orientation Discrimination (TOD).
12.11 Imager Modeling, Measurement, and Field Performance -- References -- Chapter 13 Contrast Threshold and TTP Metric -- 13.1 CTF of the Naked Eye -- 13.2 CTF for the Eye-Display System -- 13.3 Validation of Eye-Display CTF -- 13.4 Eye-Display Contrast Threshold Model -- 13.4.1 Eye-Display Contrast Threshold Model -- 13.4.2 Define Functions -- 13.4.3 Define Input Parameters -- 13.4.4 Run the Program -- 13.4.5 Comparison with Existing Models -- 13.5 TTP Metric and Range Performance Mode -- 13.6 Guide to the References -- References -- Appendix 13A -- 13A.1 Direct Calculation of CTFeye-disp,h -- Chapter 14 EO and Infrared System Performance andTarget Acquisition -- 14.1 Sensitivity and Resolution -- 14.2 NETD -- 14.3 EO Noise and Noise Equivalent Irradiance -- 14.3.1 Noise Equivalent Irradiance -- 14.4 3-D Noise -- 14.5 MTF -- 14.6 MRTD (Including 2-D MRT) -- 14.6.1 2-D MRT -- 14.7 Target Acquisition with Limiting Frequency (Johnson's N50) -- 14.8 System CTF -- 14.9 Target Acquisition with the Target Task Performance (TTP)Metric (and Vollmerhausen's V50) -- 14.10 Target Sets -- 14.11 Classic ISR, NIIRS, and General Image Quality -- 14.11.1 NIIRS -- 14.11.2 GIQE Model -- 14.12 The Performance Benefits of Dual-Band Infrared Imagers -- 14.12.1 Dual-Band Imagers -- 14.12.2 Long-Range Target Detection and Identification -- 14.12.3 Imaging with Hot Targets in the FOV -- 14.12.4 Cold-Weather Performance -- 14.12.5 Imaging Through Turbulence -- 14.12.6 Imaging Through Fog-Oil Smoke -- 14.12.7 Target Contrast (Up Close) -- 14.12.8 ATR Performance -- 14.12.9 Motion Blur and Integration Time -- 14.12.10 Target Spectral Exploitation -- 14.12.11 Signal and Image Processing: Boost, Local Area Contrast Enhancement -- 14.12.12 Imaging Through Fog, High Humidity, Rain, Haze, Smoke, and Dust -- 14.12.13 Discussion -- 14.13 Small Detector Infrared Systems.
14.13.1 Small Detector Infrared System Fundamentals.
Record Nr. UNINA-9910795995603321
Driggers Ronald G.  
Boston, MA : , : Artech House, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to infrared and electro-optical systems / / Ronald G. Driggers, Melvin H. Friedman, and John W. Devitt
Introduction to infrared and electro-optical systems / / Ronald G. Driggers, Melvin H. Friedman, and John W. Devitt
Autore Driggers Ronald G.
Edizione [Third edition.]
Pubbl/distr/stampa Boston, MA : , : Artech House, , [2022]
Descrizione fisica 1 online resource (739 pages)
Disciplina 621.36
Soggetto topico Electrooptical devices
Electrooptics
Infrared technology
Soggetto non controllato Optoelectronics
Technology & Engineering
ISBN 1-63081-833-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Introduction to Infrared and Electro-Optical Systems Third Edition -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Introduction to Imaging -- 1.2 Infrared and EO Systems -- 1.3 Wavelength Dependencies -- 1.4 Typical EO Scenario -- 1.5 Typical Infrared Scenario -- 1.6 Analytical Parameters -- 1.7 Sensitivity and Resolution -- 1.8 Linear Systems Approach -- 1.9 Summary -- 1.10 Guide to the References -- References -- Chapter 2 Mathematics -- 2.1 Complex Functions -- 2.2 Common One-Dimensional Functions -- 2.3 The 2-D Functions -- 2.4 Convolution and Correlation -- 2.5 The Fourier Transform -- 2.6 Fourier Transform Properties -- 2.7 Transform Pairs and Delta Function Properties -- 2.8 Probability -- 2.9 Important Examples -- 2.10 Guide to the References -- References -- Selected Bibliography -- Software -- Chapter 3 Linear Shift-Invariant Systems -- 3.1 Linear Systems -- 3.2 Shift Invariance -- 3.3 Basics of LSI Systems -- 3.4 Impulse Response -- 3.5 Transfer Function -- 3.6 System PSF and MTF Versus Component PSF and MTF -- 3.7 Spatial Sampling -- 3.8 Spatial Sampling and Resolution -- 3.9 Sampled Imaging Systems -- 3.10 Guide to the References -- References -- Selected Bilbiography -- Chapter 4 Diffraction -- 4.1 Electromagnetic Waves -- 4.2 Coherence -- 4.3 Fresnel and Fraunhofer Diffraction from an Aperture -- 4.3.1 Fresnel Diffraction -- 4.3.2 Fraunhofer Diffraction -- 4.4 Fraunhofer Diffraction from a Thin Lens -- 4.5 Thin Lens Optical System Diffraction PSF -- 4.6 Thin Lens Diffraction MTF -- 4.6.1 Modulation and MTF -- 4.6.2 Incoherent Diffraction MTF -- 4.6.3 Coherent Diffraction MTF -- 4.7 Calculation of Diffraction MTF -- 4.7.1 Circular Pupil: Coherent MTF -- 4.7.2 Circular Pupil: Incoherent MTF -- 4.8 Programs for Calculating Incoherent Diffraction MTF -- 4.9 Applications of Diffraction Theory.
4.9.1 Frequency Analysis of Optical Systems -- 4.9.2 Application to Geometric Optics -- 4.9.3 PSF of Distributed Aperture -- 4.9.4 Optical Image Processing -- 4.9.5 Stellar Interferometry -- 4.9.6 Apodization -- 4.9.7 Detector MTF from the Fraunhofer Diffraction Pattern -- 4.10 Light Goes Around Corners: The Poisson Spot -- References -- Chapter 5 Sources of Radiation -- 5.1 Radiometry and Photometry -- 5.1.1 Radiometric Units -- 5.1.2 Photometric Units -- 5.2 Infrared Targets and Backgrounds -- 5.2.1 Blackbody Radiation -- 5.2.2 Emissivity -- 5.2.3 Equivalent Differential Temperature (Delta T) -- 5.2.4 Apparent Differential Temperature (Apparent Delta T) -- 5.3 EO Targets and Backgrounds -- 5.3.1 External Sources -- 5.3.2 Contrast -- 5.4 Other Sensitivity Considerations -- 5.4.1 Bidirectional Reflectance Distribution Function -- 5.4.2 Color Considerations -- 5.5 Target and Background Spatial Characteristics -- 5.5.1 Bar Target Representation of Targets -- 5.5.2 Target Delta T and Characteristic Dimension -- 5.5.3 Summary of Target Characteristics -- 5.5.4 Clutter -- 5.5.5 Simulation of Target Characteristics -- 5.6 Typical Mid-Wave and Long-Wave Contrasts and Solar Effects -- References -- Selected Bibliography -- Chapter 6 Atmospherics -- 6.1 Atmospheric Components and Structure -- 6.2 Atmospheric Transmission -- 6.3 Absorption -- 6.4 Scattering -- 6.5 Path Radiance -- 6.6 Turbulence -- 6.7 Atmospheric Modulation Transfer Function -- 6.8 Models and Tools -- 6.9 Model Background Discussion -- 6.10 Some Practical Considerations -- References -- Chapter 7 Optics -- 7.1 Light Representation and the Optical Path Length -- 7.2 Reflection and Snell's Law of Refraction -- 7.3 The Thin Lens, Ray-Tracing Rules, and Gauss's Equation -- 7.4 Spherical Mirrors -- 7.5 Modeling the Thick Lens -- 7.6 Vergence -- 7.7 Multiple-Lens Systems -- 7.8 FOV.
7.9 Resolution -- 7.10 Aperture Stop, Pupils, and Rays -- 7.11 f-Number and Numerical Aperture -- 7.12 Telescopes and Angular Magnification -- 7.13 MTF -- 7.14 Aberrations -- 7.15 Optical Materials -- 7.16 Cold Stop and Cold Shield -- 7.17 A Typical Optical System -- 7.18 Diffraction Blur -- References -- Chapter 8 Detectors -- 8.1 Types of Detectors -- 8.1.1 Photon Detectors -- 8.1.2 Photoconductors -- 8.1.3 Photovoltaic -- 8.1.4 Photoemissive -- 8.1.5 Thermal Detectors -- 8.1.6 Bolometers -- 8.1.7 Pyroelectric Detectors -- 8.2 CCD and ROIC -- 8.2.1 CCD -- 8.2.2 Multiplexed Analog Readout -- 8.2.3 Column ADC ROIC or D-ROIC -- 8.3 Detector Sensitivity Analysis -- 8.3.1 Quantum Efficiency -- 8.3.2 Responsivity -- 8.3.3 Sensitivity -- 8.3.4 Detector Angular Subtense -- 8.3.5 FPA and Detector Noise (Including Detector 1/f Noise) -- 8.3.6 Dark Current and Rule'07 -- 8.3.7 1/f Noise -- 8.3.8 Photon Shot Noise -- 8.3.9 FPA and ROIC Noise (Including Fixed Pattern Noise) in Staring Systems -- 8.3.10 BLIP -- 8.4 EO Systems: Staring and Scanning Configurations -- 8.4.1 Raster Scan Systems -- 8.4.2 Linear Scan and TDI -- 8.4.3 Staring Systems: Focal Plane Arrays -- 8.5 Detector Transfer Functions -- 8.6 EO Detectors: Materials and Technology -- 8.6.1 MWIR and LWIR Photon Detectors -- 8.6.2 Far Infrared: VLWIR -- 8.6.3 Uncooled Bolometer -- 8.6.4 Visible and NIR -- 8.7 New and Emerging Infrared Detector Technology -- 8.7.1 Ultra-Large-Format Arrays and Small Pitch -- 8.7.2 Dual-Band Detectors (Third Generation) -- 8.7.2 Dual-Band Detectors (Third Generation) -- 8.7.3 Direct Bond Hybridization -- 8.7.4 Advanced ROIC Technology and Digital Pixel -- 8.7.5 Next Generation Imagers -- 8.7.6 Avalanche Photodiodes, Laser Range Gating, and Active and PassiveDetectors -- References -- Chapter 9 Electronics -- 9.1 Detector Circuits.
9.2 Conversion of Spatial and Temporal Frequencies -- 9.3 Electronics Transfer Function -- 9.4 Noise -- 9.4.1 Johnson Noise -- 9.4.2 1/f Noise -- 9.4.3 Shot Noise -- 9.5 MTF Boost Filter -- 9.6 Digital Filter MTF -- 9.7 CCDs -- 9.8 Uniformity Correction or NUC -- 9.9 Design and Construction of Camera Electronics -- References -- Chapter 10 Image Processing -- 10.1 Basics of Sampling Theory -- 10.2 Applications of Image Filtering -- 10.2.1 Localized Contrast Enhancement -- 10.2.2 Boost Filtering -- 10.2.3 Sensor Design Considerations -- 10.3 Super-Resolution Image Reconstruction -- 10.3.1 Image Acquisition: Microdither Scanner Versus Natural Jitter -- 10.3.2 Subpixel Shift Estimation -- 10.3.3 Image Reconstruction -- 10.3.4 Example and Performance Estimates -- 10.4 Image Fusion -- 10.4.1 Fusion Algorithms -- 10.5 Scene-Based NUC -- 10.6 Deep Learning -- 10.6.1 Super-Resolution -- 10.6.2 Contrast Enhancement -- 10.6.3 Image Fusion -- 10.6.4 Scene-Based NUC -- 10.7 Summary -- References -- Chapter 11 Displays, Human Perception, and Automatic Target Recognizers -- 11.1 Displays -- 11.2 CRTs -- 11.2.1 CRT Example Results -- 11.3 LEDs -- 11.4 LCDs -- 11.5 Plasma Displays -- 11.6 Emerging Display Technologies -- 11.7 Sampling and Display Processing -- 11.8 Human Perception and the Human Eye -- 11.9 MTF of the Eye -- 11.10 CTF of the Eye -- 11.11 Automatic Target Recognition -- References -- Chapter 12 Historical Performance Models -- 12.1 Introduction -- 12.2 Johnson Model Fundamentals -- 12.3 The MRT Model -- 12.4 The First FLIRs and Models -- 12.5 Model Improvements for Resolution and Noise -- 12.6 Incorporating Eye Contrast Limitations -- 12.7 Model Improvement to Add Sampling -- 12.8 Other Improvements Prior to the TTP Metric -- 12.9 The TRM3 Model -- 12.10 Triangle Orientation Discrimination (TOD).
12.11 Imager Modeling, Measurement, and Field Performance -- References -- Chapter 13 Contrast Threshold and TTP Metric -- 13.1 CTF of the Naked Eye -- 13.2 CTF for the Eye-Display System -- 13.3 Validation of Eye-Display CTF -- 13.4 Eye-Display Contrast Threshold Model -- 13.4.1 Eye-Display Contrast Threshold Model -- 13.4.2 Define Functions -- 13.4.3 Define Input Parameters -- 13.4.4 Run the Program -- 13.4.5 Comparison with Existing Models -- 13.5 TTP Metric and Range Performance Mode -- 13.6 Guide to the References -- References -- Appendix 13A -- 13A.1 Direct Calculation of CTFeye-disp,h -- Chapter 14 EO and Infrared System Performance andTarget Acquisition -- 14.1 Sensitivity and Resolution -- 14.2 NETD -- 14.3 EO Noise and Noise Equivalent Irradiance -- 14.3.1 Noise Equivalent Irradiance -- 14.4 3-D Noise -- 14.5 MTF -- 14.6 MRTD (Including 2-D MRT) -- 14.6.1 2-D MRT -- 14.7 Target Acquisition with Limiting Frequency (Johnson's N50) -- 14.8 System CTF -- 14.9 Target Acquisition with the Target Task Performance (TTP)Metric (and Vollmerhausen's V50) -- 14.10 Target Sets -- 14.11 Classic ISR, NIIRS, and General Image Quality -- 14.11.1 NIIRS -- 14.11.2 GIQE Model -- 14.12 The Performance Benefits of Dual-Band Infrared Imagers -- 14.12.1 Dual-Band Imagers -- 14.12.2 Long-Range Target Detection and Identification -- 14.12.3 Imaging with Hot Targets in the FOV -- 14.12.4 Cold-Weather Performance -- 14.12.5 Imaging Through Turbulence -- 14.12.6 Imaging Through Fog-Oil Smoke -- 14.12.7 Target Contrast (Up Close) -- 14.12.8 ATR Performance -- 14.12.9 Motion Blur and Integration Time -- 14.12.10 Target Spectral Exploitation -- 14.12.11 Signal and Image Processing: Boost, Local Area Contrast Enhancement -- 14.12.12 Imaging Through Fog, High Humidity, Rain, Haze, Smoke, and Dust -- 14.12.13 Discussion -- 14.13 Small Detector Infrared Systems.
14.13.1 Small Detector Infrared System Fundamentals.
Record Nr. UNINA-9910808822603321
Driggers Ronald G.  
Boston, MA : , : Artech House, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular Beam Epitaxy [[electronic resource] ] : Materials and Applications for Electronics and Optoelectronics / / Asahi, Hajime
Molecular Beam Epitaxy [[electronic resource] ] : Materials and Applications for Electronics and Optoelectronics / / Asahi, Hajime
Autore Asahi Hajime
Edizione [1st edition]
Pubbl/distr/stampa Wiley, , 2019
Descrizione fisica 1 online resource
Disciplina 621.3815/2
Soggetto topico Molecular beam epitaxy
Epitaxy
Crystal growth
Electronics - Materials
Optoelectronics - Materials
Soggetto non controllato Epitaxy
Crystal Growth
Electronics
Optoelectronics
Science
Technology & Engineering
ISBN 1-119-35502-8
1-119-35500-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830954303321
Asahi Hajime  
Wiley, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optoelectronic Circuits in Nanometer CMOS Technology / Mohamed Atef, Horst Zimmermann
Optoelectronic Circuits in Nanometer CMOS Technology / Mohamed Atef, Horst Zimmermann
Autore Atef, Mohamed
Pubbl/distr/stampa Cham, : Springer, 2016
Descrizione fisica xvi, 243 p. : ill. ; 24 cm
Altri autori (Persone) Zimmermann, Horst
Soggetto topico 78-XX - Optics, electromagnetic theory [MSC 2020]
00A79 (77-XX) - Physics [MSC 2020]
Soggetto non controllato Discrete Photodiodes
Laser Drivers
Modulator Drivers
Nanometer CMOS
Optical Sensors
Optical Transmitters
Optoelectronics
Photodetectors
Receivers
Transimpedance Amplifiers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0168094
Atef, Mohamed  
Cham, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui