top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Linear Algebra with Python : Theory and Applications / Makoto Tsukada ... [et al.]
Linear Algebra with Python : Theory and Applications / Makoto Tsukada ... [et al.]
Pubbl/distr/stampa Singapore, : Springer, 2023
Descrizione fisica xv, 309 p. : ill. ; 24 cm
Soggetto topico 15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
68-XX - Computer science [MSC 2020]
Soggetto non controllato Dynamical systems
Fourier expansions
Generalized inverse
Jordan normal form
Jupyter Notebook
KL Expansion
Kalman Filter
Markov Chains
Markov random fields
Matplotlib
Matrix Representation
NumPy
One-Parameter Semigroups
Orthogonal Projection
Peron-Frobenius Theorem
Python
Singular value decomposition
Spectral Radius
SymPy
Tensor products
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00279239
Singapore, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pandas Basics
Pandas Basics
Autore Campesato Oswald
Edizione [1st ed.]
Pubbl/distr/stampa Bloomfield : , : Mercury Learning & Information, , 2022
Descrizione fisica 1 online resource (215 pages)
Disciplina 005.133
Soggetto topico COMPUTERS / Programming Languages / Python
Soggetto non controllato Computer Science
Data Science
Developers
Matplotlib
NumPy
Programming
Python
Seaborn
data mining
ISBN 9781683928249
1683928245
9781683928256
1683928253
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Introduction to Python -- Tools for Python -- easy_install and pip -- virtualenv -- IPython -- Python Installation -- Setting the PATH Environment Variable (Windows Only) -- Launching Python on Your Machine -- The Python Interactive Interpreter -- Python Identifiers -- Lines, Indentation, and Multi-lines -- Quotations and Comments -- Saving Your Code in a Module -- Some Standard Modules -- The help() and dir() Functions -- Compile Time and Runtime Code Checking -- Simple Data Types -- Working with Numbers -- Working with Other Bases -- The chr() Function -- The round() Function -- Formatting Numbers -- Working with Fractions -- Unicode and UTF-8 -- Working with Unicode -- Working with Strings -- Comparing Strings -- Formatting Strings -- Uninitialized Variables and the Value None -- Slicing and Splicing Strings -- Testing for Digits and Alphabetic Characters -- Search and Replace a String in Other Strings -- Remove Leading and Trailing Characters -- Printing Text without NewLine Characters -- Text Alignment -- Working with Dates -- Converting Strings to Dates -- Exception Handling -- Handling User Input -- Command-line Arguments -- Summary -- Chapter 2: Working with Data -- Dealing with Data: What Can Go Wrong? -- What is Data Drift? -- What are Datasets? -- Data Preprocessing -- Data Types -- Preparing Datasets -- Discrete Data Versus Continuous Data -- Binning Continuous Data -- Scaling Numeric Data via Normalization -- Scaling Numeric Data via Standardization -- Scaling Numeric Data via Robust Standardization -- What to Look for in Categorical Data -- Mapping Categorical Data to Numeric Values -- Working with Dates -- Working with Currency -- Working with Outliers and Anomalies -- Outlier Detection/Removal -- Finding Outliers with NumPy.
Finding Outliers with Pandas -- Calculating Z-scores to Find Outliers -- Finding Outliers with SkLearn (Optional) -- Working with Missing Data -- Imputing Values: When is Zero a Valid Value? -- Dealing with Imbalanced Datasets -- What is SMOTE? -- SMOTE extensions -- The Bias-Variance Tradeoff -- Types of Bias in Data -- Analyzing Classifiers (Optional) -- What is LIME? -- What is ANOVA? -- Summary -- Chapter 3: Introduction to Probability and Statistics -- What is a Probability? -- Calculating the Expected Value -- Random Variables -- Discrete versus Continuous Random Variables -- Well-known Probability Distributions -- Fundamental Concepts in Statistics -- The Mean -- The Median -- The Mode -- The Variance and Standard Deviation -- Population, Sample, and Population Variance -- Chebyshev's Inequality -- What is a p-value? -- The Moments of a Function (Optional) -- What is Skewness? -- What is Kurtosis? -- Data and Statistics -- The Central Limit Theorem -- Correlation versus Causation -- Statistical Inferences -- Statistical Terms: RSS, TSS, R^2, and F1 Score -- What is an F1 score? -- Gini Impurity, Entropy, and Perplexity -- What is the Gini Impurity? -- What is Entropy? -- Calculating the Gini Impurity and Entropy Values -- Multi-dimensional Gini Index -- What is Perplexity? -- Cross-Entropy and KL Divergence -- What is Cross-Entropy? -- What is KL Divergence? -- What's Their Purpose? -- Covariance and Correlation Matrices -- The Covariance Matrix -- Covariance Matrix: An Example -- The Correlation Matrix -- Eigenvalues and Eigenvectors -- Calculating Eigenvectors: A Simple Example -- Gauss Jordan Elimination (Optional) -- PCA (Principal Component Analysis) -- The New Matrix of Eigenvectors -- Well-known Distance Metrics -- Pearson Correlation Coefficient -- Jaccard Index (or Similarity) -- Local Sensitivity Hashing (Optional).
Types of Distance Metrics -- What is Bayesian Inference? -- Bayes' Theorem -- Some Bayesian Terminology -- What is MAP? -- Why Use Bayes' Theorem? -- Summary -- Chapter 4: Introduction to Pandas (1) -- What is Pandas? -- Pandas Options and Settings -- Pandas Data Frames -- Data Frames and Data Cleaning Tasks -- Alternatives to Pandas -- A Pandas Data Frame with a NumPy Example -- Describing a Pandas Data Frame -- Pandas Boolean Data Frames -- Transposing a Pandas Data Frame -- Pandas Data Frames and Random Numbers -- Reading CSV Files in Pandas -- Specifying a Separator and Column Sets in Text Files -- Specifying an Index in Text Files -- The loc() and iloc() Methods in Pandas -- Converting Categorical Data to Numeric Data -- Matching and Splitting Strings in Pandas -- Converting Strings to Dates in Pandas -- Working with Date Ranges in Pandas -- Detecting Missing Dates in Pandas -- Interpolating Missing Dates in Pandas -- Other Operations with Dates in Pandas -- Merging and Splitting Columns in Pandas -- Reading HTML Web Pages in Pandas -- Saving a Pandas Data Frame as an HTML Web Page -- Summary -- Chapter 5: Introduction to Pandas (2) -- Combining Pandas Data Frames -- Data Manipulation with Pandas Data Frames (1) -- Data Manipulation with Pandas Data Frames (2) -- Data Manipulation with Pandas Data Frames (3) -- Pandas Data Frames and CSV Files -- Managing Columns in Data Frames -- Switching Columns -- Appending Columns -- Deleting Columns -- Inserting Columns -- Scaling Numeric Columns -- Managing Rows in Pandas -- Selecting a Range of Rows in Pandas -- Finding Duplicate Rows in Pandas -- Inserting New Rows in Pandas -- Handling Missing Data in Pandas -- Multiple Types of Missing Values -- Test for Numeric Values in a Column -- Replacing NaN Values in Pandas -- Summary -- Chapter 6: Introduction to Pandas (3) -- Threshold Values and Outliers.
The Pandas Pipe Method -- Pandas query() Method for Filtering Data -- Sorting Data Frames in Pandas -- Working with groupby() in Pandas -- Working with apply() and mapapply() in Pandas -- Handling Outliers in Pandas -- Pandas Data Frames and Scatterplots -- Pandas Data Frames and Simple Statistics -- Aggregate Operations in Pandas Data Frames -- Aggregate Operations with the titanic.csv Dataset -- Save Data Frames as CSV Files and Zip Files -- Pandas Data Frames and Excel Spreadsheets -- Working with JSON-based Data -- Python Dictionary and JSON -- Python, Pandas, and JSON -- Window Functions in Pandas -- Useful One-line Commands in Pandas -- What is pandasql? -- What is Method Chaining? -- Pandas and Method Chaining -- Pandas Profiling -- Alternatives to Pandas -- Summary -- Chapter 7: Data Visualization -- What is Data Visualization? -- Types of Data Visualization -- What is Matplotlib? -- Lines in a Grid in Matplotlib -- A Colored Grid in Matplotlib -- Randomized Data Points in Matplotlib -- A Histogram in Matplotlib -- A Set of Line Segments in Matplotlib -- Plotting Multiple Lines in Matplotlib -- Trigonometric Functions in Matplotlib -- Display IQ Scores in Matplotlib -- Plot a Best-Fitting Line in Matplotlib -- The Iris Dataset in Sklearn -- Sklearn, Pandas, and the Iris Dataset -- Working with Seaborn -- Features of Seaborn -- Seaborn Built-in Datasets -- The Iris Dataset in Seaborn -- The Titanic Dataset in Seaborn -- Extracting Data from the Titanic Dataset in Seaborn (1) -- Extracting Data from the Titanic Dataset in Seaborn (2) -- Visualizing a Pandas Dataset in Seaborn -- Data Visualization in Pandas -- What is Bokeh? -- Summary -- Index.
Record Nr. UNINA-9911006690203321
Campesato Oswald  
Bloomfield : , : Mercury Learning & Information, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Edizione [3. ed]
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 225 p. : ill. ; 24 cm
Soggetto topico 90C90 - Applications of mathematical programming [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0275136
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Edizione [3. ed]
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 225 p. : ill. ; 24 cm
Soggetto topico 00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C90 - Applications of mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00275136
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xviii, 277 p. : ill. ; 24 cm
Soggetto topico 90C90 - Applications of mathematical programming [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0123512
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xviii, 277 p. : ill. ; 24 cm
Soggetto topico 00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C90 - Applications of mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00123512
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Python Programming Using Problem Solving
Python Programming Using Problem Solving
Autore Bhasin Harsh
Edizione [1st ed.]
Pubbl/distr/stampa Bloomfield : , : Mercury Learning & Information, , 2023
Descrizione fisica 1 online resource (601 pages)
Disciplina 005.133
Soggetto topico Python (Computer program language)
COMPUTERS / General
Soggetto non controllato Matplotlib
NumPy
Pandas
algorithm
business communication
computer science
engineering
programming
science
ISBN 1-68392-861-X
1-68392-860-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title -- Title -- Copyright -- Dedication -- Content -- Preface -- Section I: Algorithmic Problem-Solving and Python Fundamentals -- Chapter 1: Algorithmic Problem-Solving -- 1.1 Introduction -- 1.2 Definition and Characteristics -- 1.3 Notations: Pseudocode and Flow Chart -- 1.4 Strategies for Problem-Solving: Recursion Versus Iteration -- 1.5 Asymptotic Notation -- 1.6 Complexity -- 1.7 Illustrations -- 1.7.1 Minimum in a List -- 1.7.2 Insert a Card in a Pack of Cards (Or Insert an element ina sorted list). There are ten cards in the pack, numbered from 1 to 10. -- 1.7.3 Guess a Number in a Given Range -- 1.7.4 Tower of Hanoi -- 1.8 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Application -- Chapter 2: Introduction to Python -- 2.1 Introduction -- 2.2 Features of Python -- 2.2.1 Easy -- 2.2.2 Type and Run -- 2.2.3 Syntax -- 2.2.4 Mixing -- 2.2.5 Dynamic Typing -- 2.2.6 Built-in Object Types -- 2.2.7 Numerous Libraries and Tools -- 2.2.8 Portable -- 2.2.9 Free -- 2.3 The Paradigms -- 2.3.1 Procedural -- 2.3.2 Object-Oriented -- 2.3.3 Functional -- 2.4 Chronology and Uses -- 2.4.1 Chronology -- 2.4.2 Uses -- 2.5 Installation of Anaconda -- 2.6 Implementation of an Algorithm: Statement, State, Control Blocks, and Functions -- 2.6.1 Statement -- 2.6.2 State -- 2.6.3 Control Flow -- 2.7 Conclusion -- Glossary -- Points to Remember -- Resources -- Exercises -- Multiple Choice Questions -- Theory -- Chapter 3: Fundamentals -- 3.1 Introduction -- 3.2 Basic Input Output -- 3.2.1 Print Function -- 3.2.2 Input -- 3.3 Running a Program -- 3.3.1 Using the Command Prompt -- 3.3.2 Executing Programs Written in .py Files -- 3.3.3 Using Anaconda Navigator -- 3.4 The Jupyter Notebook -- 3.5 Value Type and Reference Type -- 3.6 Tokens, Keywords, and Identifiers -- 3.6.1 Python Keywords.
3.6.2 Python Identifiers -- 3.6.3 Python Escape Sequence -- 3.7 Statements -- 3.7.1 Expression Statement -- 3.7.2 Assignment Statements -- 3.7.3 The Assert Statements -- 3.7.4 The Pass Statements -- 3.7.5 The Control Statements -- 3.8 Comments -- 3.9 Operators -- 3.10 Types and Examples of Operators -- 3.10.1 Arithmetic Operators -- 3.10.2 String Operators -- 3.10.3 Comparison Operators -- 3.10.4 Assignment Operators -- 3.10.5 Logical Operators -- 3.10.6 Priority of Operators -- 3.11 Basic Data Types -- 3.11.1 Integer -- 3.11.2 Float -- 3.11.3 String -- 3.12 Conclusion -- Exercises -- Multiple Choice Questions -- Theory -- Explore -- Section II: Procedural Programming -- Chapter 4: Conditional Statements -- 4.1 Introduction -- 4.2 "If," If-Else, and If-Elif-Else Constructs -- 4.3 The If-Elif-Else Ladder -- 4.4 Logical Operators -- 4.5 The Ternary Operator -- 4.6 The Get Construct -- 4.7 Examples -- 4.8 Summary -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Programming Exercises -- Chapter 5: Looping -- 5.1 Introduction -- 5.2 While -- 5.3 Patterns -- 5.4 Nesting and Applications of Loops in Lists -- 5.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Programming Exercises -- Chapter 6: Functions -- 6.1 Introduction -- 6.2 Features of a Function -- 6.2.1 Modular Programming -- 6.2.2 Reusability of Code -- 6.2.3 Manageability -- 6.2.3.1 Easy debugging -- 6.2.3.2 Efficient -- 6.3 Basic Terminology -- 6.3.1 Name of a Function -- 6.3.2 Arguments -- 6.3.3 Return Value -- 6.4 Definition and Invocation -- 6.4.1 Working -- 6.5 Types of Function -- 6.5.1 Arguments: Types of Arguments -- 6.6 Implementing Search -- 6.7 Scope -- 6.8 Recursion -- 6.8.1 Rabbit Problem -- 6.8.2 Disadvantages of Using Recursion -- 6.9 Conclusion -- Glossary -- Points to Remember -- Exercises.
Multiple Choice Questions -- Programming Exercises -- Questions Based on Recursion -- Theory -- Extra Questions -- Chapter 7: File Handling -- 7.1 Introduction -- 7.2 The File Handling Mechanism -- 7.3 The Open Function and File Access Modes -- 7.4 Python Functions for File Handling -- 7.4.1 The Essential Ones -- 7.4.2 The OS Methods -- 7.4.3 Miscellaneous Functions and File Attributes -- 7.5 Command Line Arguments -- 7.6 Implementation and illustrations -- 7.7 Conclusion -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 8: Lists, tuple, and Dictionar -- 8.1 Introduction -- 8.2 Lists -- 8.2.1 Accessing Elements: Indexing and Slicing -- 8.2.2 Mutability -- 8.2.3 Operators -- 8.2.4 Traversal -- 8.2.5 Functions -- 8.3 Tuple -- 8.3.1 Accessing Elements of a Tuple -- 8.3.2 Nonmutability -- 8.3.3 Operators -- 8.3.4 Traversal -- 8.3.5 Functions -- 8.4 Associate Arrays and Dictionaries -- 8.4.1 Displaying Elements of a Dictionary -- 8.4.2 Some Important Functions of Dictionaries -- 8.4.2.1 The len function returns the number of elements in a given dictionary. -- 8.4.2.2 The max function returns the key with maximum value. If the key is a string, then the value in the lexicographic ordering would be returned. -- 8.4.2.3 The min function returns the key with minimum value. If the key is a string, then the value in the lexicographic ordering would be returned. -- 8.4.2.4 The sorted function would sort the elements of a given dictionary by their keys. If the keys are strings then lexicographic ordering would be followed. -- 8.4.2.5 The pop function takes out the element with the given key from the dictionary. -- 8.4.3 Input from the User -- 8.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises.
Chapter 9: Iterations, Generators, and Comprehensions -- 9.1 Introduction -- 9.2 The Power of "For -- 9.3 Iterator -- 9.4 Defining an Iterable Object -- 9.5 Generators -- 9.6 Comprehensions -- 9.7 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 10: Strings -- 10.1 Introduction -- 10.2 Loops Revised -- 10.3 String Operators -- 10.3.1 The Concatenation Operator (+) -- 10.3.2 The Replication Operator (*) -- 10.3.3 The Membership Operator -- 10.4 In-Built Functions -- 10.4.1 len() -- 10.4.2 Capitalize() -- 10.4.3 Find() -- 10.4.4 Count -- 10.4.5 endswith() -- 10.4.6 encode -- 10.4.7 decode -- 10.4.8 Miscellaneous Functions -- 10.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Section III: Object-Oriented Programming -- Chapter 11: Introduction to Object-Oriented Paradigm -- 11.1 Introduction -- 11.2 Creating New Types -- 11.3 Attributes and Functions -- 11.3.1 Attributes -- 11.3.2 Functions -- 11.4 Elements of Object-Oriented Programming -- 11.4.1 Class -- 11.4.2 Object -- 11.4.3 Encapsulation -- 11.4.4 Data Hiding -- 11.4.5 Inheritance -- 11.4.6 Polymorphism -- 11.4.7 Reusability -- 11.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Explore and Design -- Chapter 12: Classes and Objects -- 12.1 Introduction to Classes -- 12.2 Defining a Class -- 12.3 Creating an Object -- 12.4 Scope of Data Members -- 12.5 Nesting -- 12.6 Constructor -- 12.7 Multiple __Init__(s) -- 12.8 Destructors -- 12.9 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 13: Inheritance -- 13.1 Introduction to Inheritance and Composition -- 13.1.1 Inheritance and Methods -- 13.1.2 Composition.
13.2 Inheritance: Importance and Types -- 13.2.1 Need for Inheritance -- 13.2.2 Types of Inheritance -- 13.2.2.1 Simple inheritance -- 13.2.2.2 Hierarchical inheritance -- 13.2.2.3 Multilevel inheritance -- 13.2.2.4 Multiple inheritance and hybrid inheritance -- 13.3 Methods -- 13.3.1 Bound Methods -- 13.3.2 Unbound Method -- 13.3.3 Methods are Callable Objects -- 13.3.4 The Importance and Usage of Super -- 13.3.5 Calling the Base Class Function Using Super -- 13.4 Search in Inheritance Tree -- 13.5 Class Interface and Abstract Classes -- 13.6 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 14: Operator Overloading -- 14.1 Introduction -- 14.2 __Init__ Revisited -- 14.2.1 Overloading __init__(Sort of) -- 14.3 Methods for Overloading Binary Operators -- 14.4 Overloading Binary Operators: The Fraction Example -- 14.5 Overloading the += Operator -- 14.6 Overloading the > -- and < -- Operators -- 14.7 Overloading the __Bool__ Operator: Precedence of __Bool__ Over __Len__ -- 14.8 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 15: Exception Handling -- 15.1 Introduction -- 15.2 Importance and Mechanism -- 15.2.1 An Example of Try/Except -- 15.2.2 Manually Raising Exceptions -- 15.3 Build-in Exceptions in Python -- 15.4 The Process -- 15.4.1 Example -- 15.4.2 Exception Handling: Try/Except -- 15.4.3 Raising Exceptions -- 15.5 Crafting User Defined Exceptions -- 15.6 An Example of Exception Handling -- 15.7 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Section IV: Numpy, Pandas, and Matplotlib -- Chapter 16: Numpy-I -- 16.1 Introduction -- 16.2 Fundamentals.
16.2.1 Similarity and Differences Between a List and a NumPy Array.
Record Nr. UNINA-9910915680903321
Bhasin Harsh  
Bloomfield : , : Mercury Learning & Information, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui