Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8) / / Herbert Busemann
| Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8) / / Herbert Busemann |
| Autore | Busemann Herbert |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (252 pages) : illustrations |
| Disciplina | 516 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Generalized spaces
Geometry - Foundations |
| Soggetto non controllato |
Abelian group
Absolute geometry Affine transformation Approximation Arc length Archimedean property Asymptote Axiom A. Axiom Axiomatic system Bernhard Riemann C0 Cartesian coordinate system Closed geodesic Collinearity Compact space Conjecture Conjugate points Constant curvature Convex body Convex curve Convex function Convex hull Convex metric space Convex polygon Convex set Coordinate system Counterexample Covariance and contravariance of vectors Curvature Diameter Differentiable function Dimension (vector space) Dimension Dimensional analysis Elementary proof Ellipse Ellipsoid Elliptic geometry Equation Equidistant Euclidean distance Euclidean geometry Euclidean space Exterior (topology) Geodesic Geodesy Geometry Group theory Hilbert geometry Hilbert space Homogeneous space Homotopy Hyperbola Hyperbolic geometry Hyperbolic motion Hyperplane Infimum and supremum Infinitesimal Intersection (set theory) Invariance theorem Jordan curve theorem Limit point Line at infinity Linear space (geometry) Linear subspace Linearity Metric space Minkowski space Non-Euclidean geometry Non-positive curvature Notation Open problem Parity (mathematics) Perpendicular Pointwise Projective geometry Projective plane Requirement Riemannian geometry Sequence Sign (mathematics) Simply connected space Special case Subgroup Subsequence Subset Tangent cone Tangent space Theorem Theory Three-dimensional space (mathematics) Topological group Topological space Topology Transitive relation Triangle inequality Two-dimensional space Unit circle Unit vector |
| ISBN | 1-4008-8229-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Table of Contents -- Chapter I. Metric Spaces with Geodesics -- Chapter II. Metric Conditions for Finsler Spaces -- Chapter III. Properties of General S. L. Spaces -- Chapter IV. Spaces with Convex Spheres -- Chapter V. Motions -- Bibliography -- Index |
| Record Nr. | UNINA-9910154744003321 |
Busemann Herbert
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Metric spaces of non-positive curvature / Martin R. Bridson, André Haefliger
| Metric spaces of non-positive curvature / Martin R. Bridson, André Haefliger |
| Autore | Bridson, Martin R. |
| Pubbl/distr/stampa | Berlin ; Heidelberg, : Springer, 1999 |
| Descrizione fisica | XXI, 643 p. : ill. ; 24 cm |
| Altri autori (Persone) | Haefliger, André |
| Soggetto topico |
20F65 - Geometric group theory [MSC 2020]
53-XX - Differential geometry [MSC 2020] 53C23 - Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces [MSC 2020] 53C45 - Global surface theory (convex surfaces à la A. D. Aleksandrov) [MSC 2020] 53C70 - Direct methods (G-spaces of Busemann, etc.) [MSC 2020] 57M07 - Topological methods in group theory [MSC 2020] |
| Soggetto non controllato |
Complexes of groups
Connected spaces Geodesics Group theory Groups of isometries Non-positive curvature |
| ISBN |
35-406-4324-9
978-36-420-8399-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00053455 |
Bridson, Martin R.
|
||
| Berlin ; Heidelberg, : Springer, 1999 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Metric spaces of non-positive curvature / Martin R. Bridson, André Haefliger
| Metric spaces of non-positive curvature / Martin R. Bridson, André Haefliger |
| Autore | Bridson, Martin R. |
| Pubbl/distr/stampa | Berlin ; Heidelberg, : Springer, 1999 |
| Descrizione fisica | XXI, 643 p. : ill. ; 24 cm |
| Altri autori (Persone) | Haefliger, André |
| Soggetto topico |
20F65 - Geometric group theory [MSC 2020]
53-XX - Differential geometry [MSC 2020] 53C23 - Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces [MSC 2020] 53C45 - Global surface theory (convex surfaces à la A. D. Aleksandrov) [MSC 2020] 53C70 - Direct methods (G-spaces of Busemann, etc.) [MSC 2020] 57M07 - Topological methods in group theory [MSC 2020] |
| Soggetto non controllato |
Complexes of groups
Connected spaces Geodesics Group theory Groups of isometries Non-positive curvature |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00299798 |
Bridson, Martin R.
|
||
| Berlin ; Heidelberg, : Springer, 1999 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||