top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Autore Triantafyllopoulos, Kostas
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xv, 495 p. : ill. ; 24 cm
Soggetto topico 93E11 - Filtering in stochastic control theory [MSC 2020]
62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020]
91B84 - Economic time series analysis [MSC 2020]
62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020]
93E03 - Stochastic systems in control theory (general) [MSC 2020]
62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020]
Soggetto non controllato Bayesian estimation
Bayesian forecasting
Control theory
Dynamic models
Financial Time Series
Non Gaussian time series
Sequential Monte Carlo
State space in dynamic systems
State-space models
Stochastic volatility
Systems stability
Volatility models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274587
Triantafyllopoulos, Kostas  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Bayesian Inference of State Space Models : Kalman Filtering and Beyond / Kostas Triantafyllopoulos
Autore Triantafyllopoulos, Kostas
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xv, 495 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020]
62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020]
62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020]
91B84 - Economic time series analysis [MSC 2020]
93E03 - Stochastic systems in control theory (general) [MSC 2020]
93E11 - Filtering in stochastic control theory [MSC 2020]
Soggetto non controllato Bayesian estimation
Bayesian forecasting
Control theory
Dynamic models
Financial Time Series
Non Gaussian time series
Sequential Monte Carlo
State space in dynamic systems
State-space models
Stochastic volatility
Systems stability
Volatility models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274587
Triantafyllopoulos, Kostas  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Non-Gaussian Autoregressive-Type Time Series / N. Balakrishna
Non-Gaussian Autoregressive-Type Time Series / N. Balakrishna
Autore Balakrishna, Narayana
Pubbl/distr/stampa Singapore, : Springer, 2021
Descrizione fisica xviii, 225 p. : ill. ; 24 cm
Soggetto topico 62F10 - Point estimation [MSC 2020]
62-XX - Statistics [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J12 - Generalized linear models (logistic models) [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020]
62F12 - Asymptotic properties of parametric estimators [MSC 2020]
Soggetto non controllato (auto)regression
Autoregressive models with non Gaussian innovations
Autoregressive models with stable innovations
Cauchy autoregressive models
Estimating function methods
Exponential autoregressive models
Gamma autoregressive models
Laplace autoregressive models
Logistic autoregressive models
Maximum probability estimators
Minification models
Mixture autoregressive models
Non Gaussian time series
Product autoregressive models
Quasi likelihood methods
Time series models with slowly varying innovations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0275481
Balakrishna, Narayana  
Singapore, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Non-Gaussian Autoregressive-Type Time Series / N. Balakrishna
Non-Gaussian Autoregressive-Type Time Series / N. Balakrishna
Autore Balakrishna, Narayana
Pubbl/distr/stampa Singapore, : Springer, 2021
Descrizione fisica xviii, 225 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62F10 - Point estimation [MSC 2020]
62F12 - Asymptotic properties of parametric estimators [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J12 - Generalized linear models (logistic models) [MSC 2020]
62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020]
Soggetto non controllato (auto)regression
Autoregressive models with non Gaussian innovations
Autoregressive models with stable innovations
Cauchy autoregressive models
Estimating function methods
Exponential autoregressive models
Gamma autoregressive models
Laplace autoregressive models
Logistic autoregressive models
Maximum probability estimators
Minification models
Mixture autoregressive models
Non Gaussian time series
Product autoregressive models
Quasi likelihood methods
Time series models with slowly varying innovations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00275481
Balakrishna, Narayana  
Singapore, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui