Neural Plasticity for Rich and Uncertain Robotic Information Streams
| Neural Plasticity for Rich and Uncertain Robotic Information Streams |
| Autore | Andrea Soltoggio |
| Pubbl/distr/stampa | Frontiers Media SA, 2016 |
| Descrizione fisica | 1 online resource (83 p.) |
| Collana | Frontiers Research Topics |
| Soggetto topico | Neurosciences |
| Soggetto non controllato |
Cognitive Modeling
emobodied cognition Neural adaptation neural plasticity Neuro-robotics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910688347003321 |
Andrea Soltoggio
|
||
| Frontiers Media SA, 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
SpiNNaker - a Spiking Neural Network Architecture
| SpiNNaker - a Spiking Neural Network Architecture |
| Autore | Furber Steve |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Norwell, MA : , : Now Publishers, , 2020 |
| Descrizione fisica | 1 electronic resource (350 p.) |
| Altri autori (Persone) | BogdanPetruț |
| Collana | NowOpen |
| Soggetto topico | Artificial intelligence |
| Soggetto non controllato |
Neuromorphic computing
Brain-inspired computing Massively-parallel computing Spiking neural networks Neuro-robotics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Copyright -- Table of Contents -- Preface -- Acknowledgements -- Funding Acknowledgements -- Glossary -- 1 Origins -- 1.1 From Ada to Alan - Early Thoughts on Brains and Computers -- 1.1.1 Ada Lovelace -- 1.1.2 Alan Turing -- 1.2 Reinventing Neural Networks - Early Thoughts on the Machine -- 1.2.1 Mighty ARMs from Little Acorns Grow -- 1.2.2 Realising Our Potential -- 1.2.3 Reinventing Neural Networks -- 1.3 The Architecture Comes Together -- 1.3.1 The State of the Neuromorphic Art -- 1.3.2 What Could We Bring to Neuromorphics? -- 1.3.3 Multicast Packet-switched AER -- 1.3.4 Optimise, Optimise… -- 1.3.5 Flexibility to Cope with Uncertainty -- 1.3.6 Big Memories -- 1.3.7 Ready to Go -- 1.4 A Scalable Hardware Architecture for Neural Simulation -- 1.4.1 Introduction -- 1.4.2 Intellectual Property -- 1.4.3 Market Opportunity -- 1.4.4 System Organisation -- 1.4.5 Node Organisation -- 1.4.6 System Architecture Issues -- 1.4.7 Development Plan -- 1.5 Summary -- 2 The SpiNNaker Chip -- 2.1 Introduction -- 2.2 Architecture -- 2.2.1 An Overview -- 2.2.2 Processor Subsystem -- 2.2.3 Router -- 2.2.4 Interconnection Networks -- 2.2.5 The Rest of the Chip -- 2.3 Multiprocessor Support -- 2.4 Event-Driven Operation -- 2.5 Chip I/O -- 2.6 Monitoring -- 2.7 Chip Details -- 2.8 Design Critique -- 2.9 Summary -- 3 Building SpiNNaker Machines -- 3.1 Putting Chips Together -- 3.1.1 SpiNN-3: Development Platform -- 3.1.2 SpiNN-5: Production Board -- 3.1.3 Nobody is Perfect: Testing and Blacklisting -- 3.2 Putting Boards Together -- 3.2.1 SpiNNaker Topology -- 3.2.2 spiNNlink: High-speed Serial Board-to-Board Interconnect -- 3.3 Putting Everything Together -- 3.3.1 SpiNNaker1M Assembly -- 3.3.2 SpiNNaker1M Interconnect -- 3.3.3 SpiNNaker1M Cabling -- 3.4 Using the Million-Core Machine: Tear it to Pieces -- 3.5 SpiNNaker1M in Action.
4 Stacks of Software Stacks -- 4.1 Introduction -- 4.2 Making Use of the SpiNNaker Architecture -- 4.3 SpiNNaker Core Software -- 4.4 Booting a Million Core Machine -- 4.5 Previous Software Versions -- 4.6 Data Structures -- 4.6.1 SpiNNaker Machines -- 4.6.2 Graphs -- 4.7 The SpiNNTools Tool Chain -- 4.7.1 Setup -- 4.7.2 Graph Creation -- 4.7.3 Graph Execution -- Machine Discovery -- Mapping -- Data Generation -- Loading -- Running -- 4.7.4 Return of Control/Extraction of Results -- 4.7.5 Resuming/Running Again -- 4.7.6 Closing -- 4.7.7 Algorithms and Execution -- 4.7.8 Data Recording and Extraction -- 4.7.9 Live Interaction -- 4.7.10 Dropped Packet Re-Injection -- 4.7.11 Network Traffic Visualisation -- 4.7.12 Performance and Power Measurements -- 4.8 Non-Neural Use Case: Conway's Game of Life -- 4.9 sPyNNaker - Software for Modelling Spiking Neural Networks -- 4.9.1 PyNN -- 4.9.2 sPyNNaker Implementation -- 4.9.3 Preprocessing -- 4.9.4 SpiNNaker Runtime Execution -- Using the Low-Level Libraries -- Time-Driven Neuron Update -- Receiving a Spike -- Activation of the Spike Processing Pipeline -- Synapse processing -- Callback Interaction -- 4.9.5 Neural Modelling -- Software Structure -- Leaky Integrate and Fire Neuron -- Izhikevich Neuron -- 4.9.6 Auxiliary Application Code -- Spike Input Generation -- Simulating Extended Synaptic Delays -- 4.10 Software Engineering for Future Systems -- 4.11 Full Example Code Listing -- 5 Applications - Doing Stuff on the Machine -- 5.1 Robot Art Project -- 5.1.1 Building Brains with Nengo and Some Bits and Pieces -- 5.2 Computer Vision with Spiking Neurons -- 5.2.1 Feature Extraction -- Gabor-like Detection -- Blob Detector -- Motion Detection -- 5.3 SpiNNak-Ear - On-line Sound Processing -- 5.3.1 Motivation for a Neuromorphic Implementation -- 5.3.2 The Early Auditory Pathway. 5.3.3 Model Algorithm and Distribution -- 5.3.4 Results -- 5.3.5 Future Developments -- 5.4 Basal Ganglia Circuit Abstraction -- 5.5 Constraint Satisfaction -- 5.5.1 Defining the Problem -- 5.5.2 Results -- 5.5.3 Graph Colouring -- 5.5.4 Latin Squares -- 5.5.5 Ising Spin Systems -- 6 From Activations to Spikes -- 6.1 Classical Models -- 6.2 Symbol Card Recognition System with Spiking ConvNets -- 6.2.1 Spiking ConvNet on SpiNNaker -- 6.2.2 Results -- 6.3 Handwritten Digit Recognition with Spiking DBNs -- Spiking DBN on SpiNNaker -- Porting DBN onto SpiNNaker -- Simulating Input Sensory Noise -- Limited Weight Precision -- 6.3.1 Results -- 6.4 Spiking Deep Neural Networks -- 6.4.1 Related Work -- 6.4.2 Siegert: Modelling the Response Function -- Biological Background -- Mismatch of the Siegert Function to Practice -- Noisy Softplus (NSP) -- 6.4.3 Generalised Off-line SNN Training -- Mapping NSP to Concrete Physical Units -- Parametric Activation Functions (PAFs) -- Training Method -- Fine Tuning -- 6.4.4 Results -- Experiment Description -- Individual Neuronal Activity -- Learning Performance -- Recognition Performance -- Power Consumption -- 6.4.5 Summary -- 7 Learning in Neural Networks -- 7.1 Sizing Up the (Biological) Competition -- 7.2 Spike-Timing-Dependent Plasticity -- 7.2.1 Experimental Evidence for Spike-Timing-Dependent Plasticity -- 7.2.2 Related Work -- 7.2.3 Implementation -- 7.2.4 Inhibitory Plasticity in Cortical Networks -- 7.2.5 The Effect of Weight Dependencies -- 7.3 Voltage-Dependent Weight Update -- 7.3.1 Results -- 7.4 Neuromodulated STDP -- 7.4.1 Eligibility Traces/Synapse Tagging -- 7.4.2 Credit Assignment -- 7.5 Structural Plasticity -- 7.5.1 Topographic Map Formation -- 7.5.2 Stable Mappings Arise from Lateral Inhibition -- 7.5.3 MNIST Classification in the Absence of Weight Changes. 7.5.4 Visualisation, Visualisation, Visualisation -- 7.5.5 Rewiring for Motion Detection -- 7.6 Neuroevolution -- 7.6.1 Pac-Man on SpiNNaker -- 7.6.2 Further Exploration of NEAT -- 7.6.3 An Evolutionary Optimisation Framework for SpiNNaker -- 7.6.4 Methods -- 7.6.5 Results -- 7.6.6 Future Work -- Different EAs -- Machine Learning -- Learning-to-Learn -- Impact on Computational Neuroscience -- 8 Creating the Future -- 8.1 Survey of Currently Available Accelerators -- 8.2 SpiNNaker2 -- 8.2.1 Lessons from SpiNNaker1 -- Strengths -- Weaknesses -- 8.2.2 Scaling Performance and Efficiency -- 8.3 SpiNNaker2 Chip Architecture -- 8.4 SpiNNaker2 Packet Router -- 8.5 The Processing Element (PE) -- 8.5.1 PE Components -- Communications Controller -- Random Number Accelerator -- Rounding Accelerator -- Elementary Function (exp, log) Accelerator -- Machine Learning (ML) Accelerator -- 8.5.2 PE Implementation Strategy and Power Management -- 8.6 Summary -- References -- Index -- About the Editors -- Contributing Authors. |
| Record Nr. | UNINA-9910476755903321 |
Furber Steve
|
||
| Norwell, MA : , : Now Publishers, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||