top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied Neural Networks and Fuzzy Logic in Power Electronics, Motor Drives, Renewable Energy Systems and Smart Grids
Applied Neural Networks and Fuzzy Logic in Power Electronics, Motor Drives, Renewable Energy Systems and Smart Grids
Autore Simões Marcelo Godoy
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (202 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive neuro-fuzzy inference system
artificial intelligence
asynchronous motor
automatic generation control
back propagation algorithm
CNN-LSTM
cognitive meters
condition assessment
convolutional neural network
current balancing algorithm
Data Envelopment Analysis (DEA)
decision optimization
deep learning
deep reinforcement learning
distribution network equipment
droop curve
electric load forecasting
electricity forecasting
energy Internet
error differentiation
frequency regulation
Fuzzy Analytical Network Process (FANP)
fuzzy iteration
fuzzy logic
fuzzy neural network control
Fuzzy Theory
knowledge embed
level-shifted SPWM
linear active disturbance rejection control
load disaggregation
long-term forecasting (LTF)
machine learning
medium-term forecasting (MTF)
medium-voltage applications
meta-heuristic algorithms
motor drives
multi information source
multi-layer perceptron
multilevel current source inverter
NILM
non-dominated sorting genetic algorithm II
non-technical losses
particle swarm optimization
phase-shifted carrier SPWM
renewable energy
reserve power
semi-supervised learning
short-term forecasting (STF)
smart grid
solar power plant
STATCOM
state machine
the rate of change of frequency
thermostatically controlled loads
vector control
very short-term forecasting (VSTF)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557103703321
Simões Marcelo Godoy  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Autore Lytras Miltiadis
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (258 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato ambient assisted living
artificial intelligence
artificial neural network
artificial neural networks
CNN
computational intelligence
conditional random fields
decision tree
deep learning
demand response
demand side management
distributed genetic algorithm
drill-in fluid
ELR
energy
energy disaggregation
energy efficient coverage
energy management
ERELM
Faster R-CNN
feature extraction
forecasting
genetic algorithm
home energy management
home energy management systems
insulator
internet of things
Jetson TX2
load
load disaggregation
LR
LSTM
machine learning
Marsh funnel
MCP39F511
mud rheology
multiple kernel learning
NILM
non-intrusive load monitoring
nonintrusive load monitoring
object detection
optimization algorithms
plastic viscosity
policy making
price
RELM
RPN
sandstone reservoirs
scheduling
self-adaptive differential evolution algorithm
sensor network
smart cities
smart city
smart grid
smart grids
smart metering
smart villages
static young's modulus
support vector machine
sustainable development
transient signature
wireless sensor networks
yield point
ISBN 3-03928-890-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404078103321
Lytras Miltiadis  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Data Analytics for Smart Meter Data
Energy Data Analytics for Smart Meter Data
Autore Reinhardt Andreas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (346 p.)
Soggetto topico Technology: general issues
Soggetto non controllato activation current
ambient influences
appliance load signatures
appliance recognition
attention mechanism
convolutional neural network
Convolutional Neural Network
data annotation
data privacy
data-driven approaches
deep learning
deep neural network
deep neural networks
device classification accuracy
distance similarity matrix
electric load simulation
electric vehicle
electrical energy
electricity theft detection
energy consumption
energy data analytics
energy data processing
energy disaggregation
ethics
exponential distribution
fryze power theory
Gaussian mixture models
GDPR
K-means cluster
load disaggregation
load scheduling
machine learning
mathematical modeling
multi-label learning
n/a
NILM
NILM datasets
non-intrusive load monitoring
Non-intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM)
nontechnical losses
Poisson distribution
power consumption data
power signature
pulse generator
random forest
real-time
review
satisfaction
semi-automatic labeling
Shapley Value
signature
simulation
smart energy system
smart grid
smart grids
smart meter
smart meter data
smart metering
smart meters
smart power grids
solar photovoltaics
synthetic data
synthetic minority oversampling technique
text convolutional neural networks (TextCNN)
time-series classification
transient load signature
transients
user-centric applications of energy data
V-I trajectory
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557645803321
Reinhardt Andreas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui