Vai al contenuto principale della pagina
Autore: | Walker Kevin |
Titolo: | An Extension of Casson's Invariant. (AM-126), Volume 126 / / Kevin Walker |
Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
©1992 | |
Descrizione fisica: | 1 online resource (140 pages) : illustrations |
Disciplina: | 514/.3 |
Soggetto topico: | Three-manifolds (Topology) |
Invariants | |
Soggetto non controllato: | Absolute value |
Andrew Casson | |
Basis (linear algebra) | |
Cohomology | |
Dan Freed | |
Dehn surgery | |
Dehn twist | |
Determinant | |
Diagram (category theory) | |
Disk (mathematics) | |
Elementary proof | |
Fundamental group | |
General position | |
Heegaard splitting | |
Homology sphere | |
Identity matrix | |
Inner product space | |
Lie group | |
Mathematical sciences | |
Morris Hirsch | |
Normal bundle | |
Scientific notation | |
Sequence | |
Surjective function | |
Symplectic geometry | |
Theorem | |
Topology | |
Classificazione: | SK 320 |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Frontmatter -- Contents -- 0. Introduction -- 1. Topology of Representation Spaces -- 2. Definition of λ -- 3. Various Properties of λ -- 4. The Dehn Surgery Formula -- 5. Combinatorial Definition of λ -- 6. Consequences of the Dehn Surgery Formula -- A. Dedekind Sums -- B. Alexander Polynomials -- Bibliography |
Sommario/riassunto: | This book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M. |
Titolo autorizzato: | An Extension of Casson's Invariant. (AM-126), Volume 126 |
ISBN: | 1-4008-8246-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910154744603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |