Algebraic curves over a finite field / / J. W. P. Hirschfeld, G. Korchmaros, F. Torres
| Algebraic curves over a finite field / / J. W. P. Hirschfeld, G. Korchmaros, F. Torres |
| Autore | Hirschfeld J. W. P (James William Peter), <1940-> |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 2008 |
| Descrizione fisica | 1 online resource (717 p.) |
| Disciplina | 516.352 |
| Collana | Princeton Series in Applied Mathematics |
| Soggetto topico |
Curves, Algebraic
Finite fields (Algebra) |
| Soggetto non controllato |
Abelian group
Abelian variety Affine plane Affine space Affine variety Algebraic closure Algebraic curve Algebraic equation Algebraic extension Algebraic function Algebraic geometry Algebraic integer Algebraic number field Algebraic number theory Algebraic number Algebraic variety Algebraically closed field Applied mathematics Automorphism Birational invariant Characteristic exponent Classification theorem Clifford's theorem Combinatorics Complex number Computation Cyclic group Cyclotomic polynomial Degeneracy (mathematics) Degenerate conic Divisor (algebraic geometry) Divisor Dual curve Dual space Elliptic curve Equation Fermat curve Finite field Finite geometry Finite group Formal power series Function (mathematics) Function field Fundamental theorem Galois extension Galois theory Gauss map General position Generic point Geometry Homogeneous polynomial Hurwitz's theorem Hyperelliptic curve Hyperplane Identity matrix Inequality (mathematics) Intersection number (graph theory) Intersection number J-invariant Line at infinity Linear algebra Linear map Mathematical induction Mathematics Menelaus' theorem Modular curve Natural number Number theory Parity (mathematics) Permutation group Plane curve Point at infinity Polar curve Polygon Polynomial Power series Prime number Projective plane Projective space Quadratic transformation Quadric Resolution of singularities Riemann hypothesis Scalar multiplication Scientific notation Separable extension Separable polynomial Sign (mathematics) Singular point of a curve Special case Subgroup Sylow theorems System of linear equations Tangent Theorem Transcendence degree Upper and lower bounds Valuation ring Variable (mathematics) Vector space |
| ISBN | 1-4008-4741-9 |
| Classificazione | SK 240 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Preface -- PART 1. General theory of curves -- Chapter One. Fundamental ideas -- Chapter Two. Elimination theory -- Chapter Three. Singular points and intersections -- Chapter Four. Branches and parametrisation -- Chapter Five. The function field of a curve -- Chapter Six. Linear series and the Riemann-Roch Theorem -- Chapter Seven. Algebraic curves in higher-dimensional spaces -- PART 2. Curves over a finite field -- Chapter Eight. Rational points and places over a finite field -- Chapter Nine. Zeta functions and curves with many rational points -- PART 3. Further developments -- Chapter Ten. Maximal and optimal curves -- Chapter Eleven. Automorphisms of an algebraic curve -- Chapter Twelve. Some families of algebraic curves -- Chapter Thirteen. Applications: codes and arcs -- Appendix A. Background on field theory and group theory -- Appendix B. Notation -- Bibliography -- Index |
| Record Nr. | UNINA-9910786795203321 |
Hirschfeld J. W. P (James William Peter), <1940->
|
||
| Princeton, New Jersey : , : Princeton University Press, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Algebraic curves over a finite field / / J. W. P. Hirschfeld, G. Korchmaros, F. Torres
| Algebraic curves over a finite field / / J. W. P. Hirschfeld, G. Korchmaros, F. Torres |
| Autore | Hirschfeld J. W. P (James William Peter), <1940-> |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 2008 |
| Descrizione fisica | 1 online resource (717 p.) |
| Disciplina | 516.352 |
| Collana | Princeton Series in Applied Mathematics |
| Soggetto topico |
Curves, Algebraic
Finite fields (Algebra) |
| Soggetto non controllato |
Abelian group
Abelian variety Affine plane Affine space Affine variety Algebraic closure Algebraic curve Algebraic equation Algebraic extension Algebraic function Algebraic geometry Algebraic integer Algebraic number field Algebraic number theory Algebraic number Algebraic variety Algebraically closed field Applied mathematics Automorphism Birational invariant Characteristic exponent Classification theorem Clifford's theorem Combinatorics Complex number Computation Cyclic group Cyclotomic polynomial Degeneracy (mathematics) Degenerate conic Divisor (algebraic geometry) Divisor Dual curve Dual space Elliptic curve Equation Fermat curve Finite field Finite geometry Finite group Formal power series Function (mathematics) Function field Fundamental theorem Galois extension Galois theory Gauss map General position Generic point Geometry Homogeneous polynomial Hurwitz's theorem Hyperelliptic curve Hyperplane Identity matrix Inequality (mathematics) Intersection number (graph theory) Intersection number J-invariant Line at infinity Linear algebra Linear map Mathematical induction Mathematics Menelaus' theorem Modular curve Natural number Number theory Parity (mathematics) Permutation group Plane curve Point at infinity Polar curve Polygon Polynomial Power series Prime number Projective plane Projective space Quadratic transformation Quadric Resolution of singularities Riemann hypothesis Scalar multiplication Scientific notation Separable extension Separable polynomial Sign (mathematics) Singular point of a curve Special case Subgroup Sylow theorems System of linear equations Tangent Theorem Transcendence degree Upper and lower bounds Valuation ring Variable (mathematics) Vector space |
| ISBN | 1-4008-4741-9 |
| Classificazione | SK 240 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Preface -- PART 1. General theory of curves -- Chapter One. Fundamental ideas -- Chapter Two. Elimination theory -- Chapter Three. Singular points and intersections -- Chapter Four. Branches and parametrisation -- Chapter Five. The function field of a curve -- Chapter Six. Linear series and the Riemann-Roch Theorem -- Chapter Seven. Algebraic curves in higher-dimensional spaces -- PART 2. Curves over a finite field -- Chapter Eight. Rational points and places over a finite field -- Chapter Nine. Zeta functions and curves with many rational points -- PART 3. Further developments -- Chapter Ten. Maximal and optimal curves -- Chapter Eleven. Automorphisms of an algebraic curve -- Chapter Twelve. Some families of algebraic curves -- Chapter Thirteen. Applications: codes and arcs -- Appendix A. Background on field theory and group theory -- Appendix B. Notation -- Bibliography -- Index |
| Record Nr. | UNINA-9910812510203321 |
Hirschfeld J. W. P (James William Peter), <1940->
|
||
| Princeton, New Jersey : , : Princeton University Press, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui
| Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui |
| Autore | Kato Kazuya (Kazuya) |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 |
| Descrizione fisica | 1 online resource (349 p.) |
| Disciplina | 514/.74 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Hodge theory
Logarithms |
| Soggetto non controllato |
Algebraic group
Algebraic variety Analytic manifold Analytic space Annulus (mathematics) Arithmetic group Atlas (topology) Canonical map Classifying space Coefficient Cohomology Compactification (mathematics) Complex manifold Complex number Congruence subgroup Conjecture Connected component (graph theory) Continuous function Convex cone Degeneracy (mathematics) Diagram (category theory) Differential form Direct image functor Divisor Elliptic curve Equivalence class Existential quantification Finite set Functor Geometry Hodge structure Hodge theory Homeomorphism Homomorphism Inverse function Iwasawa decomposition Local homeomorphism Local ring Local system Logarithmic Maximal compact subgroup Modular curve Modular form Moduli space Monodromy Monoid Morphism Natural number Nilpotent orbit Nilpotent Open problem Open set P-adic Hodge theory P-adic number Point at infinity Proper morphism Pullback (category theory) Quotient space (topology) Rational number Relative interior Ring (mathematics) Ring homomorphism Scientific notation Set (mathematics) Sheaf (mathematics) Smooth morphism Special case Strong topology Subgroup Subobject Subset Surjective function Tangent bundle Taylor series Theorem Topological space Topology Transversality (mathematics) Two-dimensional space Vector bundle Vector space Weak topology |
| ISBN |
1-4008-3711-1
0-691-13822-2 |
| Classificazione | SI 830 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 0. Overview -- Chapter 1. Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits -- Chapter 2. Logarithmic Hodge Structures -- Chapter 3. Strong Topology and Logarithmic Manifolds -- Chapter 4. Main Results -- Chapter 5. Fundamental Diagram -- Chapter 6. The Map ψ:D#val → DSL(2) -- Chapter 7. Proof of Theorem A -- Chapter 8. Proof of Theorem B -- Chapter 9. b-Spaces -- Chapter 10. Local Structures of DSL(2) and ΓDbSL(2),≤1 -- Chapter 11. Moduli of PLH with Coefficients -- Chapter 12. Examples and Problems -- Appendix -- References -- List of Symbols -- Index |
| Record Nr. | UNINA-9910791746503321 |
Kato Kazuya (Kazuya)
|
||
| Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui
| Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui |
| Autore | Kato Kazuya (Kazuya) |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 |
| Descrizione fisica | 1 online resource (349 p.) |
| Disciplina | 514/.74 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Hodge theory
Logarithms |
| Soggetto non controllato |
Algebraic group
Algebraic variety Analytic manifold Analytic space Annulus (mathematics) Arithmetic group Atlas (topology) Canonical map Classifying space Coefficient Cohomology Compactification (mathematics) Complex manifold Complex number Congruence subgroup Conjecture Connected component (graph theory) Continuous function Convex cone Degeneracy (mathematics) Diagram (category theory) Differential form Direct image functor Divisor Elliptic curve Equivalence class Existential quantification Finite set Functor Geometry Hodge structure Hodge theory Homeomorphism Homomorphism Inverse function Iwasawa decomposition Local homeomorphism Local ring Local system Logarithmic Maximal compact subgroup Modular curve Modular form Moduli space Monodromy Monoid Morphism Natural number Nilpotent orbit Nilpotent Open problem Open set P-adic Hodge theory P-adic number Point at infinity Proper morphism Pullback (category theory) Quotient space (topology) Rational number Relative interior Ring (mathematics) Ring homomorphism Scientific notation Set (mathematics) Sheaf (mathematics) Smooth morphism Special case Strong topology Subgroup Subobject Subset Surjective function Tangent bundle Taylor series Theorem Topological space Topology Transversality (mathematics) Two-dimensional space Vector bundle Vector space Weak topology |
| ISBN |
1-4008-3711-1
0-691-13822-2 |
| Classificazione | SI 830 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 0. Overview -- Chapter 1. Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits -- Chapter 2. Logarithmic Hodge Structures -- Chapter 3. Strong Topology and Logarithmic Manifolds -- Chapter 4. Main Results -- Chapter 5. Fundamental Diagram -- Chapter 6. The Map ψ:D#val → DSL(2) -- Chapter 7. Proof of Theorem A -- Chapter 8. Proof of Theorem B -- Chapter 9. b-Spaces -- Chapter 10. Local Structures of DSL(2) and ΓDbSL(2),≤1 -- Chapter 11. Moduli of PLH with Coefficients -- Chapter 12. Examples and Problems -- Appendix -- References -- List of Symbols -- Index |
| Record Nr. | UNINA-9910809577303321 |
Kato Kazuya (Kazuya)
|
||
| Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Euler systems / / by Karl Rubin
| Euler systems / / by Karl Rubin |
| Autore | Rubin Karl |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
| Descrizione fisica | 1 online resource (241 p.) |
| Disciplina | 512/.74 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Algebraic number theory
p-adic numbers |
| Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
| ISBN |
0-691-05075-9
1-4008-6520-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
| Record Nr. | UNINA-9910786510103321 |
Rubin Karl
|
||
| Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Euler systems / / by Karl Rubin
| Euler systems / / by Karl Rubin |
| Autore | Rubin Karl |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
| Descrizione fisica | 1 online resource (241 p.) |
| Disciplina | 512/.74 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Algebraic number theory
p-adic numbers |
| Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
| ISBN |
0-691-05075-9
1-4008-6520-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
| Record Nr. | UNINA-9910816804403321 |
Rubin Karl
|
||
| Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris
| The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
| Autore | Harris Michael |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
| Descrizione fisica | 1 online resource (288 p.) |
| Disciplina | 516.3/5 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
| Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
| ISBN | 1-4008-3720-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
| Record Nr. | UNINA-9910791960703321 |
Harris Michael
|
||
| Princeton, NJ : , : Princeton University Press, , [2001] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||