Curvature and Betti Numbers. (AM-32), Volume 32 / / Kentaro Yano, Salomon Trust |
Autore | Trust Salomon |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (205 pages) |
Disciplina |
513.7
516.7* |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Curvature
Geometry, Differential |
Soggetto non controllato |
Abelian integral
Affine connection Algebraic operation Almost periodic function Analytic function Arc length Betti number Coefficient Compact space Complex analysis Complex conjugate Complex dimension Complex manifold Conservative vector field Constant curvature Constant function Continuous function Convex set Coordinate system Covariance and contravariance of vectors Covariant derivative Curvature Derivative Differential form Differential geometry Dimension (vector space) Dimension Einstein manifold Equation Euclidean domain Euclidean geometry Euclidean space Existential quantification Geometry Hausdorff space Hypersphere Killing vector field Kähler manifold Lie group Manifold Metric tensor (general relativity) Metric tensor Mixed tensor One-parameter group Orientability Partial derivative Periodic function Permutation Quantity Ricci curvature Riemannian manifold Scalar (physics) Sectional curvature Self-adjoint Special case Subset Summation Symmetric tensor Symmetrization Tensor algebra Tensor calculus Tensor field Tensor Theorem Torsion tensor Two-dimensional space Uniform convergence Uniform space Unit circle Unit sphere Unit vector Vector field |
ISBN | 1-4008-8220-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter I. Riemannian Manifold -- Chapter II. Harmonic and Killing Vectors -- Chapter III. Harmonic and Killing Tensors -- Chapter IV. Harmonic and Killing Tensors in Flat Manifolds -- Chapter V. Deviation from Flatness -- Chapter VI. Semi-simple Group Spaces -- Chapter VII. Pseudo-harmonic Tensors and Pseudo-Killing Tensors in Metric Manifolds with Torsion -- Chapter VIII. Kaehler Manifold -- Chapter IX. Supplements / Bochner, S. -- Bibliography -- Backmatter |
Record Nr. | UNINA-9910154748603321 |
Trust Salomon
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Differentiable Manifolds : A Theoretical Physics Approach / Gerardo F. Torres del Castillo |
Autore | Torres del Castillo, Gerardo F. |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
Descrizione fisica | x, 444 p. : ill. ; 24 cm |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
70H05 - Hamilton's equations [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 70H03 - Lagrange's equations [MSC 2020] |
Soggetto non controllato |
Differentiable manifolds
Differential forms algebra Euler equations Fiber bundles physics Hamiltonian classical mechanics Lie algebras physics Lie derivatives Lie groups physics and geometry Metric tensor Riemannian manifolds Tensor field Time-dependent formalism Vector fields |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0248996 |
Torres del Castillo, Gerardo F.
![]() |
||
Cham, : Birkhäuser, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differentiable Manifolds : A Theoretical Physics Approach / Gerardo F. Torres del Castillo |
Autore | Torres del Castillo, Gerardo F. |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
Descrizione fisica | x, 444 p. : ill. ; 24 cm |
Soggetto topico |
53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 70H03 - Lagrange's equations [MSC 2020] 70H05 - Hamilton's equations [MSC 2020] |
Soggetto non controllato |
Differentiable manifolds
Differential forms algebra Euler equations Fiber bundles physics Hamiltonian classical mechanics Lie Algebras Lie derivatives Lie groups physics and geometry Metric tensor Riemannian manifolds Tensor field Time-dependent formalism Vector fields |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00248996 |
Torres del Castillo, Gerardo F.
![]() |
||
Cham, : Birkhäuser, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|