top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Linear Algebra with Python : Theory and Applications / Makoto Tsukada ... [et al.]
Linear Algebra with Python : Theory and Applications / Makoto Tsukada ... [et al.]
Pubbl/distr/stampa Singapore, : Springer, 2023
Descrizione fisica xv, 309 p. : ill. ; 24 cm
Soggetto topico 15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
68-XX - Computer science [MSC 2020]
Soggetto non controllato Dynamical systems
Fourier Expansion
Generalized inverse
Jordan normal form
Jupyter Notebook
KL Expansion
Kalman Filter
Markov Chains
Markov random fields
Matplotlib
Matrix Representation
NumPy
One-Parameter Semigroups
Orthogonal Projection
Peron-Frobenius Theorem
Python
Singular value decomposition
Spectral Radius
SymPy
Tensor products
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00279239
Singapore, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Edizione [3. ed]
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 225 p. : ill. ; 24 cm
Soggetto topico 90C90 - Applications of mathematical programming [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0275136
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Pyomo - Optimization Modeling in Python / Michael L. Bynum ... [et al.]
Edizione [3. ed]
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 225 p. : ill. ; 24 cm
Soggetto topico 00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C90 - Applications of mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00275136
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xviii, 277 p. : ill. ; 24 cm
Soggetto topico 90C90 - Applications of mathematical programming [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0123512
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Pyomo - Optimization Modeling in Python / William E. Hart ... [et al.]
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xviii, 277 p. : ill. ; 24 cm
Soggetto topico 00A71 - General theory of mathematical modeling [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
68W30 - Symbolic computation and algebraic computation [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C90 - Applications of mathematical programming [MSC 2020]
Soggetto non controllato Algebraic modeling languages
Hybrid optimization
Mathematical modeling tool
Matplotlib
Modeling and simulation
NumPy
PySP
Pyomo modeling library
Pyomo tutorial
Python data
Python optimization
Python script
SciPy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00123512
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Python Programming Using Problem Solving
Python Programming Using Problem Solving
Autore Bhasin Harsh
Edizione [1st ed.]
Pubbl/distr/stampa Bloomfield : , : Mercury Learning & Information, , 2023
Descrizione fisica 1 online resource (601 pages)
Disciplina 005.133
Soggetto topico Python (Computer program language)
COMPUTERS / General
Soggetto non controllato Matplotlib
NumPy
Pandas
algorithm
business communication
computer science
engineering
programming
science
ISBN 1-68392-861-X
1-68392-860-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title -- Title -- Copyright -- Dedication -- Content -- Preface -- Section I: Algorithmic Problem-Solving and Python Fundamentals -- Chapter 1: Algorithmic Problem-Solving -- 1.1 Introduction -- 1.2 Definition and Characteristics -- 1.3 Notations: Pseudocode and Flow Chart -- 1.4 Strategies for Problem-Solving: Recursion Versus Iteration -- 1.5 Asymptotic Notation -- 1.6 Complexity -- 1.7 Illustrations -- 1.7.1 Minimum in a List -- 1.7.2 Insert a Card in a Pack of Cards (Or Insert an element ina sorted list). There are ten cards in the pack, numbered from 1 to 10. -- 1.7.3 Guess a Number in a Given Range -- 1.7.4 Tower of Hanoi -- 1.8 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Application -- Chapter 2: Introduction to Python -- 2.1 Introduction -- 2.2 Features of Python -- 2.2.1 Easy -- 2.2.2 Type and Run -- 2.2.3 Syntax -- 2.2.4 Mixing -- 2.2.5 Dynamic Typing -- 2.2.6 Built-in Object Types -- 2.2.7 Numerous Libraries and Tools -- 2.2.8 Portable -- 2.2.9 Free -- 2.3 The Paradigms -- 2.3.1 Procedural -- 2.3.2 Object-Oriented -- 2.3.3 Functional -- 2.4 Chronology and Uses -- 2.4.1 Chronology -- 2.4.2 Uses -- 2.5 Installation of Anaconda -- 2.6 Implementation of an Algorithm: Statement, State, Control Blocks, and Functions -- 2.6.1 Statement -- 2.6.2 State -- 2.6.3 Control Flow -- 2.7 Conclusion -- Glossary -- Points to Remember -- Resources -- Exercises -- Multiple Choice Questions -- Theory -- Chapter 3: Fundamentals -- 3.1 Introduction -- 3.2 Basic Input Output -- 3.2.1 Print Function -- 3.2.2 Input -- 3.3 Running a Program -- 3.3.1 Using the Command Prompt -- 3.3.2 Executing Programs Written in .py Files -- 3.3.3 Using Anaconda Navigator -- 3.4 The Jupyter Notebook -- 3.5 Value Type and Reference Type -- 3.6 Tokens, Keywords, and Identifiers -- 3.6.1 Python Keywords.
3.6.2 Python Identifiers -- 3.6.3 Python Escape Sequence -- 3.7 Statements -- 3.7.1 Expression Statement -- 3.7.2 Assignment Statements -- 3.7.3 The Assert Statements -- 3.7.4 The Pass Statements -- 3.7.5 The Control Statements -- 3.8 Comments -- 3.9 Operators -- 3.10 Types and Examples of Operators -- 3.10.1 Arithmetic Operators -- 3.10.2 String Operators -- 3.10.3 Comparison Operators -- 3.10.4 Assignment Operators -- 3.10.5 Logical Operators -- 3.10.6 Priority of Operators -- 3.11 Basic Data Types -- 3.11.1 Integer -- 3.11.2 Float -- 3.11.3 String -- 3.12 Conclusion -- Exercises -- Multiple Choice Questions -- Theory -- Explore -- Section II: Procedural Programming -- Chapter 4: Conditional Statements -- 4.1 Introduction -- 4.2 "If," If-Else, and If-Elif-Else Constructs -- 4.3 The If-Elif-Else Ladder -- 4.4 Logical Operators -- 4.5 The Ternary Operator -- 4.6 The Get Construct -- 4.7 Examples -- 4.8 Summary -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Programming Exercises -- Chapter 5: Looping -- 5.1 Introduction -- 5.2 While -- 5.3 Patterns -- 5.4 Nesting and Applications of Loops in Lists -- 5.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Programming Exercises -- Chapter 6: Functions -- 6.1 Introduction -- 6.2 Features of a Function -- 6.2.1 Modular Programming -- 6.2.2 Reusability of Code -- 6.2.3 Manageability -- 6.2.3.1 Easy debugging -- 6.2.3.2 Efficient -- 6.3 Basic Terminology -- 6.3.1 Name of a Function -- 6.3.2 Arguments -- 6.3.3 Return Value -- 6.4 Definition and Invocation -- 6.4.1 Working -- 6.5 Types of Function -- 6.5.1 Arguments: Types of Arguments -- 6.6 Implementing Search -- 6.7 Scope -- 6.8 Recursion -- 6.8.1 Rabbit Problem -- 6.8.2 Disadvantages of Using Recursion -- 6.9 Conclusion -- Glossary -- Points to Remember -- Exercises.
Multiple Choice Questions -- Programming Exercises -- Questions Based on Recursion -- Theory -- Extra Questions -- Chapter 7: File Handling -- 7.1 Introduction -- 7.2 The File Handling Mechanism -- 7.3 The Open Function and File Access Modes -- 7.4 Python Functions for File Handling -- 7.4.1 The Essential Ones -- 7.4.2 The OS Methods -- 7.4.3 Miscellaneous Functions and File Attributes -- 7.5 Command Line Arguments -- 7.6 Implementation and illustrations -- 7.7 Conclusion -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 8: Lists, tuple, and Dictionar -- 8.1 Introduction -- 8.2 Lists -- 8.2.1 Accessing Elements: Indexing and Slicing -- 8.2.2 Mutability -- 8.2.3 Operators -- 8.2.4 Traversal -- 8.2.5 Functions -- 8.3 Tuple -- 8.3.1 Accessing Elements of a Tuple -- 8.3.2 Nonmutability -- 8.3.3 Operators -- 8.3.4 Traversal -- 8.3.5 Functions -- 8.4 Associate Arrays and Dictionaries -- 8.4.1 Displaying Elements of a Dictionary -- 8.4.2 Some Important Functions of Dictionaries -- 8.4.2.1 The len function returns the number of elements in a given dictionary. -- 8.4.2.2 The max function returns the key with maximum value. If the key is a string, then the value in the lexicographic ordering would be returned. -- 8.4.2.3 The min function returns the key with minimum value. If the key is a string, then the value in the lexicographic ordering would be returned. -- 8.4.2.4 The sorted function would sort the elements of a given dictionary by their keys. If the keys are strings then lexicographic ordering would be followed. -- 8.4.2.5 The pop function takes out the element with the given key from the dictionary. -- 8.4.3 Input from the User -- 8.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises.
Chapter 9: Iterations, Generators, and Comprehensions -- 9.1 Introduction -- 9.2 The Power of "For -- 9.3 Iterator -- 9.4 Defining an Iterable Object -- 9.5 Generators -- 9.6 Comprehensions -- 9.7 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 10: Strings -- 10.1 Introduction -- 10.2 Loops Revised -- 10.3 String Operators -- 10.3.1 The Concatenation Operator (+) -- 10.3.2 The Replication Operator (*) -- 10.3.3 The Membership Operator -- 10.4 In-Built Functions -- 10.4.1 len() -- 10.4.2 Capitalize() -- 10.4.3 Find() -- 10.4.4 Count -- 10.4.5 endswith() -- 10.4.6 encode -- 10.4.7 decode -- 10.4.8 Miscellaneous Functions -- 10.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Section III: Object-Oriented Programming -- Chapter 11: Introduction to Object-Oriented Paradigm -- 11.1 Introduction -- 11.2 Creating New Types -- 11.3 Attributes and Functions -- 11.3.1 Attributes -- 11.3.2 Functions -- 11.4 Elements of Object-Oriented Programming -- 11.4.1 Class -- 11.4.2 Object -- 11.4.3 Encapsulation -- 11.4.4 Data Hiding -- 11.4.5 Inheritance -- 11.4.6 Polymorphism -- 11.4.7 Reusability -- 11.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Explore and Design -- Chapter 12: Classes and Objects -- 12.1 Introduction to Classes -- 12.2 Defining a Class -- 12.3 Creating an Object -- 12.4 Scope of Data Members -- 12.5 Nesting -- 12.6 Constructor -- 12.7 Multiple __Init__(s) -- 12.8 Destructors -- 12.9 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 13: Inheritance -- 13.1 Introduction to Inheritance and Composition -- 13.1.1 Inheritance and Methods -- 13.1.2 Composition.
13.2 Inheritance: Importance and Types -- 13.2.1 Need for Inheritance -- 13.2.2 Types of Inheritance -- 13.2.2.1 Simple inheritance -- 13.2.2.2 Hierarchical inheritance -- 13.2.2.3 Multilevel inheritance -- 13.2.2.4 Multiple inheritance and hybrid inheritance -- 13.3 Methods -- 13.3.1 Bound Methods -- 13.3.2 Unbound Method -- 13.3.3 Methods are Callable Objects -- 13.3.4 The Importance and Usage of Super -- 13.3.5 Calling the Base Class Function Using Super -- 13.4 Search in Inheritance Tree -- 13.5 Class Interface and Abstract Classes -- 13.6 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 14: Operator Overloading -- 14.1 Introduction -- 14.2 __Init__ Revisited -- 14.2.1 Overloading __init__(Sort of) -- 14.3 Methods for Overloading Binary Operators -- 14.4 Overloading Binary Operators: The Fraction Example -- 14.5 Overloading the += Operator -- 14.6 Overloading the > -- and < -- Operators -- 14.7 Overloading the __Bool__ Operator: Precedence of __Bool__ Over __Len__ -- 14.8 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 15: Exception Handling -- 15.1 Introduction -- 15.2 Importance and Mechanism -- 15.2.1 An Example of Try/Except -- 15.2.2 Manually Raising Exceptions -- 15.3 Build-in Exceptions in Python -- 15.4 The Process -- 15.4.1 Example -- 15.4.2 Exception Handling: Try/Except -- 15.4.3 Raising Exceptions -- 15.5 Crafting User Defined Exceptions -- 15.6 An Example of Exception Handling -- 15.7 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Section IV: Numpy, Pandas, and Matplotlib -- Chapter 16: Numpy-I -- 16.1 Introduction -- 16.2 Fundamentals.
16.2.1 Similarity and Differences Between a List and a NumPy Array.
Record Nr. UNINA-9910915680903321
Bhasin Harsh  
Bloomfield : , : Mercury Learning & Information, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui