top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Handbook of Heuristics / Rafael Martí, Panos Pardalos, Mauricio G. C. Resende editors
Handbook of Heuristics / Rafael Martí, Panos Pardalos, Mauricio G. C. Resende editors
Edizione [Continuously updated edition]
Pubbl/distr/stampa Cham, : Springer, 2019-
Descrizione fisica pag. varia : ill. ; 24 cm
Soggetto topico 68-XX - Computer science [MSC 2020]
00A05 - Mathematics in general [MSC 2020]
00A69 - General applied mathematics [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C59 - Approximation methods and heuristics in mathematical programming [MSC 2020]
Soggetto non controllato Algorithms
Analysis
Math Applications in Computer Science
Mathematical and Computational Engineering
Mathematical software
Optimization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0127508
Cham, : Springer, 2019-
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Handbook of Heuristics / Rafael Martí, Panos Pardalos, Mauricio G. C. Resende editors
Handbook of Heuristics / Rafael Martí, Panos Pardalos, Mauricio G. C. Resende editors
Edizione [Continuously updated edition]
Pubbl/distr/stampa Cham, : Springer, 2019-
Descrizione fisica pag. varia : ill. ; 24 cm
Soggetto topico 00A05 - Mathematics in general [MSC 2020]
00A69 - General applied mathematics [MSC 2020]
68-XX - Computer science [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C59 - Approximation methods and heuristics in mathematical programming [MSC 2020]
Soggetto non controllato Algorithms
Analysis
Math Applications in Computer Science
Mathematical and Computational Engineering
Mathematical software
Optimization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00127508
Cham, : Springer, 2019-
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
International Symposium on Mathematics, Quantum Theory, and Cryptography [[electronic resource] ] : Proceedings of MQC 2019 / / edited by Tsuyoshi Takagi, Masato Wakayama, Keisuke Tanaka, Noboru Kunihiro, Kazufumi Kimoto, Yasuhiko Ikematsu
International Symposium on Mathematics, Quantum Theory, and Cryptography [[electronic resource] ] : Proceedings of MQC 2019 / / edited by Tsuyoshi Takagi, Masato Wakayama, Keisuke Tanaka, Noboru Kunihiro, Kazufumi Kimoto, Yasuhiko Ikematsu
Autore Takagi Tsuyoshi
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (XII, 274 p. 83 illus., 24 illus. in color.)
Disciplina 519
Collana Mathematics for Industry
Soggetto topico Applied mathematics
Engineering mathematics
Data structures (Computer science)
Quantum computers
Computer security
Mathematical and Computational Engineering
Data Structures and Information Theory
Quantum Computing
Systems and Data Security
Soggetto non controllato Mathematical and Computational Engineering
Data Structures and Information Theory
Quantum Computing
Systems and Data Security
Mathematical and Computational Engineering Applications
Data and Information Security
Cryptography for Quantum Computers
Post-quantum Cryptography
Number Theory
Representation Theory
Quantum Physics
Security Modelling
Open Access
Maths for engineers
Algorithms & data structures
Information theory
Mathematical theory of computation
Computer security
Network security
ISBN 981-15-5191-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Sustainable Cryptography -- What Kind of Insight Provide Analytical Solutions of Quantum Models? -- Emerging Ultrastrong Coupling between Light and Matter Observed in Circuit Quantum Electrodynamics -- Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer -- Quantum Factoring Algorithm: Resource Estimation and Survey of Experiments -- A Review of Secret Key Distribution Based on Bounded Observability -- Towards Constructing Fully Homomorphic Encryption without Ciphertext Noise from Group Theory -- Number Theoretic Study in Quantum Interactions -- From the Bloch Sphere to Phase Space Representations with the Gottesman-Kitaev-Preskill Encoding -- A Data Concealing Technique with Random Noise Disturbance and A Restoring Technique for the Concealed Data by Stochastic Process Estimation.
Record Nr. UNISA-996466557703316
Takagi Tsuyoshi  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pedestrian and evacuation dynamics 2012 / Ulrich Weidmann, Uwe Kirsch, Michael Schreckenberg editors
Pedestrian and evacuation dynamics 2012 / Ulrich Weidmann, Uwe Kirsch, Michael Schreckenberg editors
Pubbl/distr/stampa Cham, : Springer, 2014
Descrizione fisica XXIV, 1424 p. : ill. ; 24 cm
Soggetto topico 97Mxx - Education of mathematical modeling and applications of mathematics [MSC 2020]
Soggetto non controllato Civil Engineering
Computational science and engineering
Decision theory
Mathematical and Computational Engineering
Numeric Computing
Operations Research
Simulation and Modeling
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0103242
Cham, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Pedestrian and evacuation dynamics 2012 / Ulrich Weidmann, Uwe Kirsch, Michael Schreckenberg editors
Pedestrian and evacuation dynamics 2012 / Ulrich Weidmann, Uwe Kirsch, Michael Schreckenberg editors
Pubbl/distr/stampa Cham, : Springer, 2014
Descrizione fisica XXIV, 1424 p. : ill. ; 24 cm
Soggetto topico 97Mxx - Education of mathematical modeling and applications of mathematics [MSC 2020]
Soggetto non controllato Civil Engineering
Computational science and engineering
Decision theory
Mathematical and Computational Engineering
Numeric Computing
Operations Research
Simulation and Modeling
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00103242
Cham, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course
Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course
Autore Walrand Jean
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (390 p.)
Soggetto topico Maths for computer scientists
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Soggetto non controllato Probability and Statistics in Computer Science
Communications Engineering, Networks
Mathematical and Computational Engineering
Probability Theory and Stochastic Processes
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Mathematical and Computational Engineering Applications
Probability Theory
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Applied probability
Hypothesis testing
Detection theory
Expectation maximization
Stochastic dynamic programming
Machine learning
Stochastic gradient descent
Deep neural networks
Matrix completion
Linear and polynomial regression
Open Access
Maths for computer scientists
Mathematical & statistical software
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Stochastics
ISBN 3-030-49995-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464521903316
Walrand Jean  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Probability in Electrical Engineering and Computer Science : An Application-Driven Course
Probability in Electrical Engineering and Computer Science : An Application-Driven Course
Autore Walrand Jean
Edizione [1st ed.]
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (390 p.)
Soggetto topico Maths for computer scientists
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Soggetto non controllato Probability and Statistics in Computer Science
Communications Engineering, Networks
Mathematical and Computational Engineering
Probability Theory and Stochastic Processes
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Mathematical and Computational Engineering Applications
Probability Theory
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Applied probability
Hypothesis testing
Detection theory
Expectation maximization
Stochastic dynamic programming
Machine learning
Stochastic gradient descent
Deep neural networks
Matrix completion
Linear and polynomial regression
Open Access
Maths for computer scientists
Mathematical & statistical software
Communications engineering / telecommunications
Maths for engineers
Probability & statistics
Stochastics
ISBN 3-030-49995-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Introduction -- About This Second Edition -- Contents -- 1 PageRank: A -- 1.1 Model -- 1.2 Markov Chain -- 1.2.1 General Definition -- 1.2.2 Distribution After n Steps and Invariant Distribution -- 1.3 Analysis -- 1.3.1 Irreducibility and Aperiodicity -- 1.3.2 Big Theorem -- 1.3.3 Long-Term Fraction of Time -- 1.4 Illustrations -- 1.5 Hitting Time -- 1.5.1 Mean Hitting Time -- 1.5.2 Probability of Hitting a State Before Another -- 1.5.3 FSE for Markov Chain -- 1.6 Summary -- 1.6.1 Key Equations and Formulas -- 1.7 References -- 1.8 Problems -- 2 PageRank: B -- 2.1 Sample Space -- 2.2 Laws of Large Numbers for Coin Flips -- 2.2.1 Convergence in Probability -- 2.2.2 Almost Sure Convergence -- 2.3 Laws of Large Numbers for i.i.d. RVs -- 2.3.1 Weak Law of Large Numbers -- 2.3.2 Strong Law of Large Numbers -- 2.4 Law of Large Numbers for Markov Chains -- 2.5 Proof of Big Theorem -- 2.5.1 Proof of Theorem 1.1 (a) -- 2.5.2 Proof of Theorem 1.1 (b) -- 2.5.3 Periodicity -- 2.6 Summary -- 2.6.1 Key Equations and Formulas -- 2.7 References -- 2.8 Problems -- 3 Multiplexing: A -- 3.1 Sharing Links -- 3.2 Gaussian Random Variable and CLT -- 3.2.1 Binomial and Gaussian -- 3.2.2 Multiplexing and Gaussian -- 3.2.3 Confidence Intervals -- 3.3 Buffers -- 3.3.1 Markov Chain Model of Buffer -- 3.3.2 Invariant Distribution -- 3.3.3 Average Delay -- 3.3.4 A Note About Arrivals -- 3.3.5 Little's Law -- 3.4 Multiple Access -- 3.5 Summary -- 3.5.1 Key Equations and Formulas -- 3.6 References -- 3.7 Problems -- 4 Multiplexing: B -- 4.1 Characteristic Functions -- 4.2 Proof of CLT (Sketch) -- 4.3 Moments of N(0, 1) -- 4.4 Sum of Squares of 2 i.i.d. N(0, 1) -- 4.5 Two Applications of Characteristic Functions -- 4.5.1 Poisson as a Limit of Binomial -- 4.5.2 Exponential as Limit of Geometric -- 4.6 Error Function.
4.7 Adaptive Multiple Access -- 4.8 Summary -- 4.8.1 Key Equations and Formulas -- 4.9 References -- 4.10 Problems -- 5 Networks: A -- 5.1 Spreading Rumors -- 5.2 Cascades -- 5.3 Seeding the Market -- 5.4 Manufacturing of Consent -- 5.5 Polarization -- 5.6 M/M/1 Queue -- 5.7 Network of Queues -- 5.8 Optimizing Capacity -- 5.9 Internet and Network of Queues -- 5.10 Product-Form Networks -- 5.10.1 Example -- 5.11 References -- 5.12 Problems -- 6 Networks-B -- 6.1 Social Networks -- 6.2 Continuous-Time Markov Chains -- 6.2.1 Two-State Markov Chain -- 6.2.2 Three-State Markov Chain -- 6.2.3 General Case -- 6.2.4 Uniformization -- 6.2.5 Time Reversal -- 6.3 Product-Form Networks -- 6.4 Proof of Theorem 5.7 -- 6.5 References -- 7 Digital Link-A -- 7.1 Digital Link -- 7.2 Detection and Bayes' Rule -- 7.2.1 Bayes' Rule -- 7.2.2 Circumstances vs. Causes -- 7.2.3 MAP and MLE -- Example: Ice Cream and Sunburn -- 7.2.4 Binary Symmetric Channel -- 7.3 Huffman Codes -- 7.4 Gaussian Channel -- Simulation -- 7.4.1 BPSK -- 7.5 Multidimensional Gaussian Channel -- 7.5.1 MLE in Multidimensional Case -- 7.6 Hypothesis Testing -- 7.6.1 Formulation -- 7.6.2 Solution -- 7.6.3 Examples -- Gaussian Channel -- Mean of Exponential RVs -- Bias of a Coin -- Discrete Observations -- 7.7 Summary -- 7.7.1 Key Equations and Formulas -- 7.8 References -- 7.9 Problems -- 8 Digital Link-B -- 8.1 Proof of Optimality of the Huffman Code -- 8.2 Proof of Neyman-Pearson Theorem 7.4 -- 8.3 Jointly Gaussian Random Variables -- 8.3.1 Density of Jointly Gaussian Random Variables -- 8.4 Elementary Statistics -- 8.4.1 Zero-Mean? -- 8.4.2 Unknown Variance -- 8.4.3 Difference of Means -- 8.4.4 Mean in Hyperplane? -- 8.4.5 ANOVA -- 8.5 LDPC Codes -- 8.6 Summary -- 8.6.1 Key Equations and Formulas -- 8.7 References -- 8.8 Problems -- 9 Tracking-A -- 9.1 Examples -- 9.2 Estimation Problem.
9.3 Linear Least Squares Estimates -- 9.3.1 Projection -- 9.4 Linear Regression -- 9.5 A Note on Overfitting -- 9.6 MMSE -- 9.6.1 MMSE for Jointly Gaussian -- 9.7 Vector Case -- 9.8 Kalman Filter -- 9.8.1 The Filter -- 9.8.2 Examples -- Random Walk -- Random Walk with Unknown Drift -- Random Walk with Changing Drift -- Falling Object -- 9.9 Summary -- 9.9.1 Key Equations and Formulas -- 9.10 References -- 9.11 Problems -- 10 Tracking: B -- 10.1 Updating LLSE -- 10.2 Derivation of Kalman Filter -- 10.3 Properties of Kalman Filter -- 10.3.1 Observability -- 10.3.2 Reachability -- 10.4 Extended Kalman Filter -- 10.4.1 Examples -- 10.5 Summary -- 10.5.1 Key Equations and Formulas -- 10.6 References -- 11 Speech Recognition: A -- 11.1 Learning: Concepts and Examples -- 11.2 Hidden Markov Chain -- 11.3 Expectation Maximization and Clustering -- 11.3.1 A Simple Clustering Problem -- 11.3.2 A Second Look -- 11.4 Learning: Hidden Markov Chain -- 11.4.1 HEM -- 11.4.2 Training the Viterbi Algorithm -- 11.5 Summary -- 11.5.1 Key Equations and Formulas -- 11.6 References -- 11.7 Problems -- 12 Speech Recognition: B -- 12.1 Online Linear Regression -- 12.2 Theory of Stochastic Gradient Projection -- 12.2.1 Gradient Projection -- 12.2.2 Stochastic Gradient Projection -- 12.2.3 Martingale Convergence -- 12.3 Big Data -- 12.3.1 Relevant Data -- 12.3.2 Compressed Sensing -- 12.3.3 Recommendation Systems -- 12.4 Deep Neural Networks -- 12.4.1 Calculating Derivatives -- 12.5 Summary -- 12.5.1 Key Equations and Formulas -- 12.6 References -- 12.7 Problems -- 13 Route Planning: A -- 13.1 Model -- 13.2 Formulation 1: Pre-planning -- 13.3 Formulation 2: Adapting -- 13.4 Markov Decision Problem -- 13.4.1 Examples -- 13.5 Infinite Horizon -- 13.6 Summary -- 13.6.1 Key Equations and Formulas -- 13.7 References -- 13.8 Problems -- 14 Route Planning: B -- 14.1 LQG Control.
14.1.1 Letting N →∞ -- 14.2 LQG with Noisy Observations -- 14.2.1 Letting N →∞ -- 14.3 Partially Observed MDP -- 14.3.1 Example: Searching for Your Keys -- 14.4 Summary -- 14.4.1 Key Equations and Formulas -- 14.5 References -- 14.6 Problems -- 15 Perspective and Complements -- 15.1 Inference -- 15.2 Sufficient Statistic -- 15.2.1 Interpretation -- 15.3 Infinite Markov Chains -- 15.3.1 Lyapunov-Foster Criterion -- 15.4 Poisson Process -- 15.4.1 Definition -- 15.4.2 Independent Increments -- 15.4.3 Number of Jumps -- 15.5 Boosting -- 15.6 Multi-Armed Bandits -- 15.7 Capacity of BSC -- 15.8 Bounds on Probabilities -- 15.8.1 Applying the Bounds to Multiplexing -- 15.9 Martingales -- 15.9.1 Definitions -- 15.9.2 Examples -- 15.9.3 Law of Large Numbers -- 15.9.4 Wald's Equality -- 15.10 Summary -- 15.10.1 Key Equations and Formulas -- 15.11 References -- 15.12 Problems -- Correction to: Probability in Electrical Engineering and Computer Science -- Correction to: Probability in Electrical Engineering and Computer Science (Funding Information) -- A Elementary Probability -- A.1 Symmetry -- A.2 Conditioning -- A.3 Common Confusion -- A.4 Independence -- A.5 Expectation -- A.6 Variance -- A.7 Inequalities -- A.8 Law of Large Numbers -- A.9 Covariance and Regression -- A.10 Why Do We Need a More Sophisticated Formalism? -- A.11 References -- A.12 Solved Problems -- B Basic Probability -- B.1 General Framework -- B.1.1 Probability Space -- B.1.2 Borel-Cantelli Theorem -- B.1.3 Independence -- B.1.4 Converse of Borel-Cantelli Theorem -- B.1.5 Conditional Probability -- B.1.6 Random Variable -- B.2 Discrete Random Variable -- B.2.1 Definition -- B.2.2 Expectation -- B.2.3 Function of a RV -- B.2.4 Nonnegative RV -- B.2.5 Linearity of Expectation -- B.2.6 Monotonicity of Expectation -- B.2.7 Variance, Standard Deviation.
B.2.8 Important Discrete Random Variables -- B.3 Multiple Discrete Random Variables -- B.3.1 Joint Distribution -- B.3.2 Independence -- B.3.3 Expectation of Function of Multiple RVs -- B.3.4 Covariance -- B.3.5 Conditional Expectation -- B.3.6 Conditional Expectation of a Function -- B.4 General Random Variables -- B.4.1 Definitions -- B.4.2 Examples -- B.4.3 Expectation -- B.4.4 Continuity of Expectation -- B.5 Multiple Random Variables -- B.5.1 Random Vector -- B.5.2 Minimum and Maximum of Independent RVs -- B.5.3 Sum of Independent Random Variables -- B.6 Random Vectors -- B.6.1 Orthogonality and Projection -- B.7 Density of a Function of Random Variables -- B.7.1 Linear Transformations -- B.7.2 Nonlinear Transformations -- B.8 References -- B.9 Problems -- References -- Index.
Record Nr. UNINA-9910488709003321
Walrand Jean  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Software for Exascale Computing - SPPEXA 2016-2019 [[electronic resource] /] / edited by Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann, Wolfgang E. Nagel
Software for Exascale Computing - SPPEXA 2016-2019 [[electronic resource] /] / edited by Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann, Wolfgang E. Nagel
Autore Bungartz Hans-Joachim
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (XII, 620 p. 256 illus., 231 illus. in color.)
Disciplina 003.3
Collana Lecture Notes in Computational Science and Engineering
Soggetto topico Computer simulation
Computer software—Reusability
Computer mathematics
Input-output equipment (Computers)
Applied mathematics
Engineering mathematics
Physics
Simulation and Modeling
Performance and Reliability
Computational Science and Engineering
Input/Output and Data Communications
Mathematical and Computational Engineering
Numerical and Computational Physics, Simulation
Soggetto non controllato Simulation and Modeling
Performance and Reliability
Computational Science and Engineering
Input/Output and Data Communications
Mathematical and Computational Engineering
Numerical and Computational Physics, Simulation
Computer Science
Computer Hardware
Mathematical and Computational Engineering Applications
Theoretical, Mathematical and Computational Physics
open access
computational algorithms and numerical methods
data management and exploration
high-performance computing
simulation software and applications
system software and software tools
Computer modelling & simulation
Systems analysis & design
Maintenance & repairs
Maths for scientists
Computer networking & communications
Distributed databases
Maths for engineers
Mathematical physics
ISBN 3-030-47956-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXA-DUNE: Flexible PDE Solvers, Numerical Methods, and Applications -- Smart-DASH: Smart Data Structures and Algorithms with Support for Hierarchical Locality -- Terra-Neo: Integrated Co-Design of an Exascale Earth Mantle Modeling Framework -- EXASTEEL-2: Dual Phase Steels - from Micro to Macro Properties -- GROMEX: Unified Long-range Electrostatics and Dynamic Protonation for Realistic Biomolecular Simulations on the Exascale -- ExaStencils: Advanced Stencil-Code Engineering -- ExaFSA: Exascale Simulation of Fluid-Structure-Acoustics Interactions -- EXAHD: An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond -- EXAMAG: Exascale Simulations of the Magnetic Universe -- FFMK: A Fast and Fault Tolerant Microkernel-based System for Exascale Computing -- ESSEX-II: Equipping Sparse Solvers for Exascale -- EXASOLVERS: Extreme Scale Solvers for Coupled Problems -- ADA-FS: Advanced Data Placement via Ad-hoc File Systems at Extreme Scales -- AIMES: Advanced Computation and I/O Methods for Earth-System Simulations. ExaDG: High-Order Discontinuous Galerkin for the Exa-Scale. MYX-MUST Correctness Checking for YML and XMP Programs -- ExtraPeak: Automatic Performance Modeling of HPC Applications with Multiple Model Parameters.
Record Nr. UNISA-996418265803316
Bungartz Hans-Joachim  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui