Benefit/Cost-Driven Software Development [[electronic resource] ] : With Benefit Points and Size Points
| Benefit/Cost-Driven Software Development [[electronic resource] ] : With Benefit Points and Size Points |
| Autore | Hannay Jo Erskine |
| Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2021 |
| Descrizione fisica | 1 online resource (114 p.) |
| Collana | Simula SpringerBriefs on Computing |
| Soggetto topico |
Mathematical & statistical software
Software Engineering Desenvolupament de programari Anàlisi cost-benefici |
| Soggetto genere / forma | Llibres electrònics |
| Soggetto non controllato |
Mathematical Software
Software Engineering open access benefits management benefit points earned business value management benefit/costs index uncertainty assessment periodization Mathematical & statistical software |
| ISBN | 3-030-74218-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466404003316 |
Hannay Jo Erskine
|
||
| Cham, : Springer International Publishing AG, 2021 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Benefit/Cost-Driven Software Development : With Benefit Points and Size Points
| Benefit/Cost-Driven Software Development : With Benefit Points and Size Points |
| Autore | Hannay Jo Erskine |
| Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2021 |
| Descrizione fisica | 1 online resource (114 p.) |
| Collana | Simula SpringerBriefs on Computing |
| Soggetto topico |
Mathematical & statistical software
Software Engineering Desenvolupament de programari Anàlisi cost-benefici |
| Soggetto genere / forma | Llibres electrònics |
| Soggetto non controllato |
Mathematical Software
Software Engineering open access benefits management benefit points earned business value management benefit/costs index uncertainty assessment periodization Mathematical & statistical software |
| ISBN | 3-030-74218-0 |
| Classificazione | COM051230COM077000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910488721003321 |
Hannay Jo Erskine
|
||
| Cham, : Springer International Publishing AG, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Innovative Learning Environments in STEM Higher Education [[electronic resource] ] : Opportunities, Challenges, and Looking Forward / / edited by Jungwoo Ryoo, Kurt Winkelmann
| Innovative Learning Environments in STEM Higher Education [[electronic resource] ] : Opportunities, Challenges, and Looking Forward / / edited by Jungwoo Ryoo, Kurt Winkelmann |
| Autore | Ryoo Jungwoo |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Springer Nature, 2021 |
| Descrizione fisica | 1 online resource (XV, 137 p. 8 illus., 7 illus. in color.) |
| Disciplina | 519.5 |
| Collana | SpringerBriefs in Statistics |
| Soggetto topico |
Statistics
Machine learning Learning Instruction Knowledge representation (Information theory) Statistics for Social Sciences, Humanities, Law Machine Learning Statistics and Computing/Statistics Programs Learning & Instruction Knowledge based Systems Educació STEM Educació superior |
| Soggetto genere / forma | Llibres electrònics |
| Soggetto non controllato |
Statistics for Social Sciences, Humanities, Law
Machine Learning Statistics and Computing/Statistics Programs Learning & Instruction Knowledge based Systems Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy Statistics and Computing Education Innovative Learning Environments ILEs Science, Technology, Engineering, and Math STEM virtual reality VR augmented reality mixed reality cross reality extended reality artificial intelligence AI adaptive learning personalized learning higher education multimodal learning mobile learning Open Access Social research & statistics Mathematical & statistical software Teaching skills & techniques Cognition & cognitive psychology Expert systems / knowledge-based systems |
| ISBN | 3-030-58948-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- 2. X-FILEs Vision for personalized and Adaptive Learning -- 3. X-FILEs Vision for Multi-modal Learning Formats -- 4. X-FILEs Vision for Extended/Cross Reality (XR) -- 5. X-FILEs Vision for Artificial Intelligence (AI) and Machine Learning (ML) -- 6. Cross-Cutting Concerns -- 7. Epilogue. |
| Record Nr. | UNISA-996466564503316 |
Ryoo Jungwoo
|
||
| Springer Nature, 2021 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course
| Probability in Electrical Engineering and Computer Science [[electronic resource] ] : An Application-Driven Course |
| Autore | Walrand Jean |
| Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2021 |
| Descrizione fisica | 1 online resource (390 p.) |
| Soggetto topico |
Maths for computer scientists
Communications engineering / telecommunications Maths for engineers Probability & statistics |
| Soggetto non controllato |
Probability and Statistics in Computer Science
Communications Engineering, Networks Mathematical and Computational Engineering Probability Theory and Stochastic Processes Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Mathematical and Computational Engineering Applications Probability Theory Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Applied probability Hypothesis testing Detection theory Expectation maximization Stochastic dynamic programming Machine learning Stochastic gradient descent Deep neural networks Matrix completion Linear and polynomial regression Open Access Maths for computer scientists Mathematical & statistical software Communications engineering / telecommunications Maths for engineers Probability & statistics Stochastics |
| ISBN | 3-030-49995-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996464521903316 |
Walrand Jean
|
||
| Cham, : Springer International Publishing AG, 2021 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Probability in Electrical Engineering and Computer Science : An Application-Driven Course
| Probability in Electrical Engineering and Computer Science : An Application-Driven Course |
| Autore | Walrand Jean |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2021 |
| Descrizione fisica | 1 online resource (390 p.) |
| Soggetto topico |
Maths for computer scientists
Communications engineering / telecommunications Maths for engineers Probability & statistics |
| Soggetto non controllato |
Probability and Statistics in Computer Science
Communications Engineering, Networks Mathematical and Computational Engineering Probability Theory and Stochastic Processes Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Mathematical and Computational Engineering Applications Probability Theory Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Applied probability Hypothesis testing Detection theory Expectation maximization Stochastic dynamic programming Machine learning Stochastic gradient descent Deep neural networks Matrix completion Linear and polynomial regression Open Access Maths for computer scientists Mathematical & statistical software Communications engineering / telecommunications Maths for engineers Probability & statistics Stochastics |
| ISBN | 3-030-49995-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Introduction -- About This Second Edition -- Contents -- 1 PageRank: A -- 1.1 Model -- 1.2 Markov Chain -- 1.2.1 General Definition -- 1.2.2 Distribution After n Steps and Invariant Distribution -- 1.3 Analysis -- 1.3.1 Irreducibility and Aperiodicity -- 1.3.2 Big Theorem -- 1.3.3 Long-Term Fraction of Time -- 1.4 Illustrations -- 1.5 Hitting Time -- 1.5.1 Mean Hitting Time -- 1.5.2 Probability of Hitting a State Before Another -- 1.5.3 FSE for Markov Chain -- 1.6 Summary -- 1.6.1 Key Equations and Formulas -- 1.7 References -- 1.8 Problems -- 2 PageRank: B -- 2.1 Sample Space -- 2.2 Laws of Large Numbers for Coin Flips -- 2.2.1 Convergence in Probability -- 2.2.2 Almost Sure Convergence -- 2.3 Laws of Large Numbers for i.i.d. RVs -- 2.3.1 Weak Law of Large Numbers -- 2.3.2 Strong Law of Large Numbers -- 2.4 Law of Large Numbers for Markov Chains -- 2.5 Proof of Big Theorem -- 2.5.1 Proof of Theorem 1.1 (a) -- 2.5.2 Proof of Theorem 1.1 (b) -- 2.5.3 Periodicity -- 2.6 Summary -- 2.6.1 Key Equations and Formulas -- 2.7 References -- 2.8 Problems -- 3 Multiplexing: A -- 3.1 Sharing Links -- 3.2 Gaussian Random Variable and CLT -- 3.2.1 Binomial and Gaussian -- 3.2.2 Multiplexing and Gaussian -- 3.2.3 Confidence Intervals -- 3.3 Buffers -- 3.3.1 Markov Chain Model of Buffer -- 3.3.2 Invariant Distribution -- 3.3.3 Average Delay -- 3.3.4 A Note About Arrivals -- 3.3.5 Little's Law -- 3.4 Multiple Access -- 3.5 Summary -- 3.5.1 Key Equations and Formulas -- 3.6 References -- 3.7 Problems -- 4 Multiplexing: B -- 4.1 Characteristic Functions -- 4.2 Proof of CLT (Sketch) -- 4.3 Moments of N(0, 1) -- 4.4 Sum of Squares of 2 i.i.d. N(0, 1) -- 4.5 Two Applications of Characteristic Functions -- 4.5.1 Poisson as a Limit of Binomial -- 4.5.2 Exponential as Limit of Geometric -- 4.6 Error Function.
4.7 Adaptive Multiple Access -- 4.8 Summary -- 4.8.1 Key Equations and Formulas -- 4.9 References -- 4.10 Problems -- 5 Networks: A -- 5.1 Spreading Rumors -- 5.2 Cascades -- 5.3 Seeding the Market -- 5.4 Manufacturing of Consent -- 5.5 Polarization -- 5.6 M/M/1 Queue -- 5.7 Network of Queues -- 5.8 Optimizing Capacity -- 5.9 Internet and Network of Queues -- 5.10 Product-Form Networks -- 5.10.1 Example -- 5.11 References -- 5.12 Problems -- 6 Networks-B -- 6.1 Social Networks -- 6.2 Continuous-Time Markov Chains -- 6.2.1 Two-State Markov Chain -- 6.2.2 Three-State Markov Chain -- 6.2.3 General Case -- 6.2.4 Uniformization -- 6.2.5 Time Reversal -- 6.3 Product-Form Networks -- 6.4 Proof of Theorem 5.7 -- 6.5 References -- 7 Digital Link-A -- 7.1 Digital Link -- 7.2 Detection and Bayes' Rule -- 7.2.1 Bayes' Rule -- 7.2.2 Circumstances vs. Causes -- 7.2.3 MAP and MLE -- Example: Ice Cream and Sunburn -- 7.2.4 Binary Symmetric Channel -- 7.3 Huffman Codes -- 7.4 Gaussian Channel -- Simulation -- 7.4.1 BPSK -- 7.5 Multidimensional Gaussian Channel -- 7.5.1 MLE in Multidimensional Case -- 7.6 Hypothesis Testing -- 7.6.1 Formulation -- 7.6.2 Solution -- 7.6.3 Examples -- Gaussian Channel -- Mean of Exponential RVs -- Bias of a Coin -- Discrete Observations -- 7.7 Summary -- 7.7.1 Key Equations and Formulas -- 7.8 References -- 7.9 Problems -- 8 Digital Link-B -- 8.1 Proof of Optimality of the Huffman Code -- 8.2 Proof of Neyman-Pearson Theorem 7.4 -- 8.3 Jointly Gaussian Random Variables -- 8.3.1 Density of Jointly Gaussian Random Variables -- 8.4 Elementary Statistics -- 8.4.1 Zero-Mean? -- 8.4.2 Unknown Variance -- 8.4.3 Difference of Means -- 8.4.4 Mean in Hyperplane? -- 8.4.5 ANOVA -- 8.5 LDPC Codes -- 8.6 Summary -- 8.6.1 Key Equations and Formulas -- 8.7 References -- 8.8 Problems -- 9 Tracking-A -- 9.1 Examples -- 9.2 Estimation Problem. 9.3 Linear Least Squares Estimates -- 9.3.1 Projection -- 9.4 Linear Regression -- 9.5 A Note on Overfitting -- 9.6 MMSE -- 9.6.1 MMSE for Jointly Gaussian -- 9.7 Vector Case -- 9.8 Kalman Filter -- 9.8.1 The Filter -- 9.8.2 Examples -- Random Walk -- Random Walk with Unknown Drift -- Random Walk with Changing Drift -- Falling Object -- 9.9 Summary -- 9.9.1 Key Equations and Formulas -- 9.10 References -- 9.11 Problems -- 10 Tracking: B -- 10.1 Updating LLSE -- 10.2 Derivation of Kalman Filter -- 10.3 Properties of Kalman Filter -- 10.3.1 Observability -- 10.3.2 Reachability -- 10.4 Extended Kalman Filter -- 10.4.1 Examples -- 10.5 Summary -- 10.5.1 Key Equations and Formulas -- 10.6 References -- 11 Speech Recognition: A -- 11.1 Learning: Concepts and Examples -- 11.2 Hidden Markov Chain -- 11.3 Expectation Maximization and Clustering -- 11.3.1 A Simple Clustering Problem -- 11.3.2 A Second Look -- 11.4 Learning: Hidden Markov Chain -- 11.4.1 HEM -- 11.4.2 Training the Viterbi Algorithm -- 11.5 Summary -- 11.5.1 Key Equations and Formulas -- 11.6 References -- 11.7 Problems -- 12 Speech Recognition: B -- 12.1 Online Linear Regression -- 12.2 Theory of Stochastic Gradient Projection -- 12.2.1 Gradient Projection -- 12.2.2 Stochastic Gradient Projection -- 12.2.3 Martingale Convergence -- 12.3 Big Data -- 12.3.1 Relevant Data -- 12.3.2 Compressed Sensing -- 12.3.3 Recommendation Systems -- 12.4 Deep Neural Networks -- 12.4.1 Calculating Derivatives -- 12.5 Summary -- 12.5.1 Key Equations and Formulas -- 12.6 References -- 12.7 Problems -- 13 Route Planning: A -- 13.1 Model -- 13.2 Formulation 1: Pre-planning -- 13.3 Formulation 2: Adapting -- 13.4 Markov Decision Problem -- 13.4.1 Examples -- 13.5 Infinite Horizon -- 13.6 Summary -- 13.6.1 Key Equations and Formulas -- 13.7 References -- 13.8 Problems -- 14 Route Planning: B -- 14.1 LQG Control. 14.1.1 Letting N →∞ -- 14.2 LQG with Noisy Observations -- 14.2.1 Letting N →∞ -- 14.3 Partially Observed MDP -- 14.3.1 Example: Searching for Your Keys -- 14.4 Summary -- 14.4.1 Key Equations and Formulas -- 14.5 References -- 14.6 Problems -- 15 Perspective and Complements -- 15.1 Inference -- 15.2 Sufficient Statistic -- 15.2.1 Interpretation -- 15.3 Infinite Markov Chains -- 15.3.1 Lyapunov-Foster Criterion -- 15.4 Poisson Process -- 15.4.1 Definition -- 15.4.2 Independent Increments -- 15.4.3 Number of Jumps -- 15.5 Boosting -- 15.6 Multi-Armed Bandits -- 15.7 Capacity of BSC -- 15.8 Bounds on Probabilities -- 15.8.1 Applying the Bounds to Multiplexing -- 15.9 Martingales -- 15.9.1 Definitions -- 15.9.2 Examples -- 15.9.3 Law of Large Numbers -- 15.9.4 Wald's Equality -- 15.10 Summary -- 15.10.1 Key Equations and Formulas -- 15.11 References -- 15.12 Problems -- Correction to: Probability in Electrical Engineering and Computer Science -- Correction to: Probability in Electrical Engineering and Computer Science (Funding Information) -- A Elementary Probability -- A.1 Symmetry -- A.2 Conditioning -- A.3 Common Confusion -- A.4 Independence -- A.5 Expectation -- A.6 Variance -- A.7 Inequalities -- A.8 Law of Large Numbers -- A.9 Covariance and Regression -- A.10 Why Do We Need a More Sophisticated Formalism? -- A.11 References -- A.12 Solved Problems -- B Basic Probability -- B.1 General Framework -- B.1.1 Probability Space -- B.1.2 Borel-Cantelli Theorem -- B.1.3 Independence -- B.1.4 Converse of Borel-Cantelli Theorem -- B.1.5 Conditional Probability -- B.1.6 Random Variable -- B.2 Discrete Random Variable -- B.2.1 Definition -- B.2.2 Expectation -- B.2.3 Function of a RV -- B.2.4 Nonnegative RV -- B.2.5 Linearity of Expectation -- B.2.6 Monotonicity of Expectation -- B.2.7 Variance, Standard Deviation. B.2.8 Important Discrete Random Variables -- B.3 Multiple Discrete Random Variables -- B.3.1 Joint Distribution -- B.3.2 Independence -- B.3.3 Expectation of Function of Multiple RVs -- B.3.4 Covariance -- B.3.5 Conditional Expectation -- B.3.6 Conditional Expectation of a Function -- B.4 General Random Variables -- B.4.1 Definitions -- B.4.2 Examples -- B.4.3 Expectation -- B.4.4 Continuity of Expectation -- B.5 Multiple Random Variables -- B.5.1 Random Vector -- B.5.2 Minimum and Maximum of Independent RVs -- B.5.3 Sum of Independent Random Variables -- B.6 Random Vectors -- B.6.1 Orthogonality and Projection -- B.7 Density of a Function of Random Variables -- B.7.1 Linear Transformations -- B.7.2 Nonlinear Transformations -- B.8 References -- B.9 Problems -- References -- Index. |
| Record Nr. | UNINA-9910488709003321 |
Walrand Jean
|
||
| Cham, : Springer International Publishing AG, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Solving PDEs in Python [[electronic resource] ] : The FEniCS Tutorial I / / by Hans Petter Langtangen, Anders Logg
| Solving PDEs in Python [[electronic resource] ] : The FEniCS Tutorial I / / by Hans Petter Langtangen, Anders Logg |
| Autore | Langtangen Hans Petter |
| Edizione | [1st ed. 2016.] |
| Pubbl/distr/stampa | Springer Nature, 2016 |
| Descrizione fisica | 1 online resource (XI, 146 p. 17 illus., 16 illus. in color.) |
| Disciplina | 004 |
| Collana | Simula SpringerBriefs on Computing |
| Soggetto topico |
Computer mathematics
Algorithms Mathematics Visualization Computer software Numerical analysis Software engineering Computational Science and Engineering Mathematical Software Numerical Analysis Software Engineering/Programming and Operating Systems |
| Soggetto non controllato |
Computational Science and Engineering
Algorithms Visualization Mathematical Software Numerical Analysis Software Engineering/Programming and Operating Systems Data and Information Visualization Software Engineering Finite element FEniCS Partial Differential Equations Python Simulation Open access Maths for scientists Combinatorics & graph theory Mathematical & statistical software Operating systems |
| ISBN | 3-319-52462-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Preliminaries -- 2 Fundamentals: Solving the Poisson Equation -- 3 A Gallery of Finite Element Solvers -- 4 Subdomains and Boundary Conditions -- 5 Extensions: Improving the Poisson Solver -- References. |
| Record Nr. | UNINA-9910169179003321 |
Langtangen Hans Petter
|
||
| Springer Nature, 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||