top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data-Driven Fault Detection and Reasoning for Industrial Monitoring
Data-Driven Fault Detection and Reasoning for Industrial Monitoring
Autore Wang Jing <1974 April 21->
Pubbl/distr/stampa Springer Nature, 2022
Descrizione fisica 1 online resource (277 pages)
Altri autori (Persone) ZhouJinglin
ChenXiaolu
Collana Intelligent Control and Learning Systems
Soggetto topico Robotics
Artificial intelligence
Soggetto non controllato Multivariate causality analysis
Process monitoring
Manifold learning
Fault diagnosis
Data modeling
Fault classification
Fault reasoning
Causal network
Probabilistic graphical model
Data-driven methods
Industrial monitoring
Open Access
ISBN 981-16-8044-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910520099003321
Wang Jing <1974 April 21->  
Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62-XX - Statistics [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
62-XX - Statistics [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Mathematical Principles of Topological and Geometric Data Analysis / Parvaneh Joharinad, Jürgen Jost
Mathematical Principles of Topological and Geometric Data Analysis / Parvaneh Joharinad, Jürgen Jost
Autore Joharinad, Parvaneh
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica ix, 281 p. : ill. ; 24 cm
Soggetto topico 55N31 - Persistent homology and applications, topological data analysis [MSC 2020]
57-XX - Manifolds and cell complexes [MSC 2020]
62-XX - Statistics [MSC 2020]
62R40 - Topological data analysis [MSC 2020]
Soggetto non controllato Category Theory
Curvature of metric spaces
Dimension reduction
Graph theory
Homology
Kernel technique
Laplace operators
Manifold learning
Riemannian geometry
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00278879
Joharinad, Parvaneh  
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui