top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Autore Sorrentino Alfonso
Edizione [Pilot project,eBook available to selected US libraries only]
Pubbl/distr/stampa Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Descrizione fisica 1 online resource (129 p.)
Disciplina 514.74
Collana Mathematical Notes
Soggetto topico Hamiltonian systems
Hamilton-Jacobi equations
Soggetto non controllato Albert Fathi
Aubry set
AubryЍather theory
Hamiltonian dynamics
Hamiltonians
HamiltonЊacobi equation
John Mather
KAM theory
KAM tori
Lagrangian dynamics
MAK tori
Ma set
Ma's critical value
Ma's potential
Maher sets
Peierls' barrier
Tonelli Lagrangians
action-minimizing measure
action-minimizing orbits
chaos
classical mechanics
compact manifold
differentiability
invariant Lagrangian graphs
invariant probability measures
invariant sets
orbits
pendulum
stable motion
strict convexity
unstable motion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Preface -- Chapter One. Tonelli Lagrangians and Hamiltonians on Compact Manifolds -- Chapter Two. From KAM Theory to Aubry-Mather Theory -- Chapter Three. Action-Minimizing Invariant Measures for Tonelli Lagrangians -- Chapter Four. Action-Minimizing Curves for Tonelli Lagrangians -- Chapter Five. The Hamilton-Jacobi Equation and Weak KAM Theory -- Appendices -- Appendix A. On the Existence of Invariant Lagrangian Graphs -- Appendix B. Schwartzman Asymptotic Cycle and Dynamics -- Bibliography -- Index
Record Nr. UNINA-9910788016003321
Sorrentino Alfonso  
Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Autore Sorrentino Alfonso
Edizione [Pilot project,eBook available to selected US libraries only]
Pubbl/distr/stampa Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Descrizione fisica 1 online resource (129 p.)
Disciplina 514.74
Collana Mathematical Notes
Soggetto topico Hamiltonian systems
Hamilton-Jacobi equations
Soggetto non controllato Albert Fathi
Aubry set
AubryЍather theory
Hamiltonian dynamics
Hamiltonians
HamiltonЊacobi equation
John Mather
KAM theory
KAM tori
Lagrangian dynamics
MAK tori
Ma set
Ma's critical value
Ma's potential
Maher sets
Peierls' barrier
Tonelli Lagrangians
action-minimizing measure
action-minimizing orbits
chaos
classical mechanics
compact manifold
differentiability
invariant Lagrangian graphs
invariant probability measures
invariant sets
orbits
pendulum
stable motion
strict convexity
unstable motion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Preface -- Chapter One. Tonelli Lagrangians and Hamiltonians on Compact Manifolds -- Chapter Two. From KAM Theory to Aubry-Mather Theory -- Chapter Three. Action-Minimizing Invariant Measures for Tonelli Lagrangians -- Chapter Four. Action-Minimizing Curves for Tonelli Lagrangians -- Chapter Five. The Hamilton-Jacobi Equation and Weak KAM Theory -- Appendices -- Appendix A. On the Existence of Invariant Lagrangian Graphs -- Appendix B. Schwartzman Asymptotic Cycle and Dynamics -- Bibliography -- Index
Record Nr. UNINA-9910812171703321
Sorrentino Alfonso  
Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui