top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Autore Vitelli Massimo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (280 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive neuro-fuzzy inference systems
ANFIS
artificial neural network
artificial neural networks
clear sky irradiance
clustering-based PV fault detection
COA
complex network analysis
data fusion
deterioration
deterministic optimization algorithm
diffractive grating
diffractive optical element
double flames generation (DFG) strategy
duty cycle
environmental parameters
fault prognosis
feed-forward neural networks
finite difference time domain
genetic algorithm
global horizontal irradiance
global optimization
gradient descent
hot spot
image processing
implicit model solution
integrated energy systems
linear approximation
long short-term memory
LSTM cell
machine learning
mathematical modeling
maximum power point tracking
metaheuristic optimization algorithm
moth-flame optimization
MPPT algorithm
multiple regression model
national power system
optical modelling
parameter extraction
partial shading
particle swarm optimization-artificial neural networks
performances evaluation
persistent predictor
photovoltaic array
photovoltaic model
photovoltaic module
photovoltaic plants
photovoltaic power prediction
photovoltaic system
photovoltaic systems
photovoltaics
publicly available weather reports
PV fleet
PV power prediction
PVs power output forecasting
recurrent neural networks
renewable energy
self-imputation
sensor network
series-parallel
single stage grid connected systems
single-diode model
smart energy management
solar cell optimization
Solar cell parameters
solar concentrator
solar irradiation
spectral beam splitting
statistical method
sustainable development
thermal image
two-diode model
unsupervised learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557297703321
Vitelli Massimo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Intelligence in Photovoltaic Systems / Emanuele Ogliari, Sonia Leva
Computational Intelligence in Photovoltaic Systems / Emanuele Ogliari, Sonia Leva
Autore Ogliari Emanuele
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (180 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato artificial neural network
online diagnosis
genetic algorithm
renewable energy
unit commitment
photovoltaic panel
power forecasting
metaheuristic
monitoring system
embedded systems
firefly algorithm
tracking system
MPPT algorithm
integrated storage
day-ahead forecast
solar radiation
prototype model
artificial neural networks
parameter extraction
thermal image
thermal model
solar cell
PV cell temperature
evolutionary algorithms
uncertainty
battery
harmony search meta-heuristic algorithm
single-diode photovoltaic model
symbiotic organisms search
photovoltaics
tilt angle
smart photovoltaic system blind
orientation
photovoltaic
particle swarm optimization
analytical methods
computational intelligence
statistical errors
ensemble methods
solar photovoltaic
electrical parameters
demand response
metaheuristic algorithm
ISBN 9783039210992
3039210998
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910674025103321
Ogliari Emanuele  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui