top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension [[electronic resource] /] / edited by Toshio Nakanishi, H. Scott Baldwin, Jeffrey R. Fineman, Hiroyuki Yamagishi
Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension [[electronic resource] /] / edited by Toshio Nakanishi, H. Scott Baldwin, Jeffrey R. Fineman, Hiroyuki Yamagishi
Autore Nakanishi Toshio
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore, : Springer Nature, 2020
Descrizione fisica 1 online resource (XIII, 406 p. 84 illus., 74 illus. in color.)
Disciplina 616.12
Soggetto topico Cardiology
Pediatrics
Soggetto non controllato Cardiology
Pediatrics
Internal Medicine
Pulmonary circulation
Ductus arteriosus
Molecular mechanisms
Cellular interactions
Stem cell engineering
Heart
Lung
Open access
Cardiovascular medicine
Paediatric medicine
ISBN 981-15-1185-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PART I: Basic Science of Pulmonary Development and Pulmonary Arterial Disease -- 1 Perspective for Part I -- 2 The alveolar stem cell niche of the mammalian lung -- 3 Lung development and Notch signalling -- 4 Specialized smooth muscle cell progenitors in pulmonary hypertension -- 5 Diverse Pharmacology of Prostacyclin Mimetics: Implications for Pulmonary Hypertension -- 6 Endothelial-to-mesenchymal transition in pulmonary hypertension -- 7 Extracellular vesicles, MicroRNAs and Pulmonary Hypertension -- 8 Roles of Tbx4 in the lung mesenchyme for airway and vascular development -- 9 A lacZ reporter transgenic mouse line revealing the development of pulmonary artery -- 10 Roles of stem cell antigen-1 in the pulmonary endothelium -- 11 Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice -- 12 Involvement of CXCR4 and stem cells in a rat model of pulmonary arterial hypertension -- 13 Ca2+ signal through inositol trisphosphate receptors for cardiovascular development and pathophysiology of pulmonary arterial hypertension -- PART II: Abnormal pulmonary circulation in the developing lung and heart -- 14 Perspective for Part II -- 15 Pathophysiology of Pulmonary Circulation in Congenital Heart Disease -- 16 Development of Novel Therapies for Pulmonary Hypertension by Clinical Application of Basic Research -- 17 Using Patient-Specific Induced Pluripotent Stem Cells to Understand and Treat Pulmonary Arterial Hypertension -- 18 Modeling pulmonary arterial hypertension using induced pluripotent stem cells -- 19 Dysfunction and restoration of endothelial cell communications in Pulmonary Arterial Hypertension: Therapeutic implications -- 20 Inflammatory Cytokines in the Pathogenesis of Pulmonary Arterial Hypertension -- 21 Genotypes and Phenotypes of Chinese Pediatric Patients with Idiopathic and Heritable Pulmonary Arterial Hypertension- Experiences from A Single Center -- 22 Fundamental Insight into Pulmonary Vascular Disease : Perspectives from Pediatric PAH in Japan -- 23 Risk stratification in paediatric pulmonary arterial hypertension -- 24 The Adaptive Right Ventricle in Eisenmenger Syndrome: Potential Therapeutic Targets for Pulmonary Hypertension -- 25 Impaired right coronary vasodilator function in pulmonary hypertensive rat assessed by in vivo synchrotron microangiography -- 26 Relationship between mutations in ENG and ALK1 gene and the affected organs in hereditary hemorrhagic telangiectasia -- 27 A genetic analysis for patients with pulmonary arterial hypertension -- 28 Evaluation and visualization of right ventricle using three dimensional echocardiography -- 29 Pulmonary hypertension associated with post-operative Tetralogy of Fallot -- 30 Microscopic Lung Airway Abnormality and Pulmonary Vascular Disease Associated with Congenital Systemic to Pulmonary Shunt -- 31 Respiratory syncytial virus infection in infants with heart and lung diseases -- PART III: Ductus arteriosus: bridge over troubled vessels -- 32 Perspective for Part III -- 33 The ductus arteriosus, a vascular outsider, in relation to the pulmonary circulation -- 34 Molecular, genetic, and pharmacological modulation of the ductus arteriosus: KATP channels as novel drug targets -- 35 New mediators in the biology of the ductus arteriosus: Lessons from the chicken embryo -- 36 Constriction of the Ductus Arteriosus with KATP Channel Inhibitors -- 37 New insights on how to treat patent ductus arteriosus -- 38 Antenatal Administration of Betamethasone Contributes to Intimal thickening of the Ductus Arteriosus -- 39 Prostaglandin E-EP4-mediated fibulin-1 up-regulation plays a role in intimal thickening of the ductus arteriosus -- 40 Transcriptional profiles in the chicken ductus arteriosus during hatching -- 41 Inhibition of Cyclooxygenase Contracts Chicken Ductus Arteriosus -- 42 Prostaglandin E2 receptor EP4 inhibition constricts the rat ductus arteriosus -- 43 Dilatation of the Ductus Arteriosus by Diazoxide in Fetal and Neonatal Rats -- 44 The Effect of Long-term Administration of Plostaglandin E1 on Morphological Changes in Ductus Arteriosus -- 45 Significance of SGK1 as a protein kinase transcriptionally regulated by ALK1 signaling in vascular endothelial cells -- 46 Fabrication of Implantable Human Arterial Graft by Periodic Hydrostatic Pressure -- 47 Optimum preparation of Candida albicans cell wall extra (CAWE) for the mouse model of Kawasaki disease -- PART IV: Development and Regeneration of the Cardiovascular System -- 48 Perspective for Part IV -- 49 Advances in the second heart field -- 50 Novel cardiac progenitors for all components of the heart except for the right ventricle -- 51 Regional and TBX5-dependent gene expression in the atria: Implications for pulmonary vein development and atrial fibrillation -- 52 The Endocardium as a Master Regulator of Ventricular Trabeculation -- 53 The Role of Alternative mRNA Splicing in Heart Development -- 54 Progress in the Generation of Multiple Lineage Human-iPSC-derived 3D Engineered Cardiac Tissues for Cardiac Repair -- 55 Quantification of contractility in stem cell derived cardiomyocytes -- 56 A neurotrophic factor receptor GFRA2, a specific surface antigen for cardiac progenitor cells, regulates the process of myocardial compaction -- 57 Cardiac cell specification and differentiation by the defined factors -- 58 A Temporo-Spatial Regulation of Sema3c is Essential for Interaction of Progenitor Cells during Cardiac Outflow Tract Development -- 59 Spatiotemporally restricted developmental alterations in the anterior and secondary heart fields cause distinct conotruncal heart defects -- 60 Significance of transcription factors in the mechanisms of great artery malformations -- 61 The different c-kit expression in human induced pluripotent stem (iPS) cells between with feeder cells and without feeder cells -- 62 Establishment of induced pluripotent stem cells from immortalized B cell lines and their differentiation into cardiomyocytes -- 63 Establishment of an in vitro LQT3 model, using induced pluripotent stem cells from LQT3 patient-derived cardiomyocytes -- 64 Genetic Assessments for clinical courses of Left ventricle noncompaction -- 65 Elucidating the pathogenesis of congenital heart disease in the era of next-generation sequencing.
Record Nr. UNINA-9910380729503321
Nakanishi Toshio  
Singapore, : Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Orchestration of an Immune Response to Respiratory Pathogens
Orchestration of an Immune Response to Respiratory Pathogens
Autore Sant Andrea
Pubbl/distr/stampa Frontiers Media SA, 2019
Descrizione fisica 1 electronic resource (183 p.)
Soggetto topico Medicine
Immunology
Soggetto non controllato Viruses
Innate response
respiratory tract
CD4 T cells
CD8 T cells
Epitopes
Cell trafficking
Lung
Tuberculosis
NK cells
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557241103321
Sant Andrea  
Frontiers Media SA, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui