Differential Geometry and Lie Groups : A Computational Perspective / Jean Gallier, Jocelyn Quaintance |
Autore | Gallier, Jean |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xv, 777 p. : ill. ; 24 cm |
Altri autori (Persone) | Quaintance, Jocelyn |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020] |
Soggetto non controllato |
Adjoint representation
Connections on real manifolds Differential geometry Grassmannian manifold Homogeneous spaces Lie Brackets Lie algebras for computing Linear lie groups Lorentz groups Matrix Lie groups Matrix exponential Riemannian manifold Riemannian manifold curvature Stiefel manifold Theory of manifold optimization techniques |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249001 |
Gallier, Jean | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Geometry and Lie Groups : A Computational Perspective / Jean Gallier, Jocelyn Quaintance |
Autore | Gallier, Jean |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xv, 777 p. : ill. ; 24 cm |
Altri autori (Persone) | Quaintance, Jocelyn |
Soggetto topico |
22-XX - Topological groups, Lie groups [MSC 2020]
53-XX - Differential geometry [MSC 2020] |
Soggetto non controllato |
Adjoint representation
Connections on real manifolds Differential geometry Grassmannian manifold Homogeneous spaces Lie Brackets Lie algebras for computing Linear lie groups Lorentz groups Matrix Lie groups Matrix exponential Riemannian manifold Riemannian manifold curvature Stiefel manifold Theory of manifold optimization techniques |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249001 |
Gallier, Jean | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|