top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner
Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner
Autore Kobayashi, Toshiyuki
Pubbl/distr/stampa Singapore, : Springer, 2016
Descrizione fisica IX, 192 p. ; 24 cm
Altri autori (Persone) Kubo, Toshihisa
Pevzner, Michael
Soggetto topico 53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020]
22E46 - Semisimple Lie groups and their representations [MSC 2020]
53C10 - G-structures [MSC 2020]
58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020]
Soggetto non controllato Branching law
Conformal geometry
Conformal holography
Differential Forms
F-method
Fradkin-Tseytlin operator
Gegenbauer polynomial
Hodge operator
Homogeneous space
Hyperbolic space
Hypergeometric function
Lie groups
Lorentz group
Paneitz operator
Reductive Groups
Riemannian geometry
Symmetry breaking operators
Unitary representations
Verma module
Yamabe operator
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0107586
Kobayashi, Toshiyuki  
Singapore, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner
Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner
Autore Kobayashi, Toshiyuki
Pubbl/distr/stampa Singapore, : Springer, 2016
Descrizione fisica IX, 192 p. ; 24 cm
Altri autori (Persone) Kubo, Toshihisa
Pevzner, Michael
Soggetto topico 22E46 - Semisimple Lie groups and their representations [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020]
53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020]
53C10 - G-structures [MSC 2020]
58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020]
Soggetto non controllato Branching law
Conformal geometry
Conformal holography
Differential Forms
F-method
Fradkin-Tseytlin operator
Gegenbauer polynomial
Hodge operator
Homogeneous space
Hyperbolic space
Hypergeometric function
Lie groups
Lorentz group
Paneitz operator
Reductive Groups
Riemannian geometry
Symmetry breaking operators
Unitary representations
Verma module
Yamabe operator
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00107586
Kobayashi, Toshiyuki  
Singapore, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Reflection Positivity : A Representation Theoretic Perspective / Karl-Hermann Neeb, Gestur Ólafsson
Reflection Positivity : A Representation Theoretic Perspective / Karl-Hermann Neeb, Gestur Ólafsson
Autore Neeb, Karl-Hermann
Pubbl/distr/stampa Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018
Descrizione fisica viii, 139 p. : ill. ; 24 cm
Altri autori (Persone) Ólafsson, Gestur
Soggetto topico 42-XX - Harmonic analysis on Euclidean spaces [MSC 2020]
81-XX - Quantum theory [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020]
Soggetto non controllato Cartan dual group
Constructive Quantum Field Theory
Euclidean group
Hardy-Littlewood-Sobolev inequality
Kubo-Martin-Schwinger condition
Lattice Gauge Theory
Lax-Phillips scattering theory
Lorentz group
Poincare group
Reflection positive Hilbert space
Representation Theory
Riemannian geometry
Stochastic processes
Symmetric Lie groups
Wick rotation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0124969
Neeb, Karl-Hermann  
Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Reflection Positivity : A Representation Theoretic Perspective / Karl-Hermann Neeb, Gestur Ólafsson
Reflection Positivity : A Representation Theoretic Perspective / Karl-Hermann Neeb, Gestur Ólafsson
Autore Neeb, Karl-Hermann
Pubbl/distr/stampa Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018
Descrizione fisica viii, 139 p. : ill. ; 24 cm
Altri autori (Persone) Ólafsson, Gestur
Soggetto topico 22-XX - Topological groups, Lie groups [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020]
42-XX - Harmonic analysis on Euclidean spaces [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020]
81-XX - Quantum theory [MSC 2020]
Soggetto non controllato Cartan dual group
Constructive Quantum Field Theory
Euclidean group
Hardy-Littlewood-Sobolev inequality
Kubo-Martin-Schwinger condition
Lattice Gauge Theory
Lax-Phillips scattering theory
Lorentz group
Poincare group
Reflection positive Hilbert space
Representation Theory
Riemannian geometry
Stochastic processes
Symmetric Lie groups
Wick rotation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00124969
Neeb, Karl-Hermann  
Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh
Autore Kobayashi, Toshiyuki
Pubbl/distr/stampa Singapore, : Springer, 2018
Descrizione fisica XV, 342 p. ; 24 cm
Altri autori (Persone) Speh, Birgit
Soggetto topico 11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020]
22E30 - Analysis on real and complex Lie groups [MSC 2020]
22E46 - Semisimple Lie groups and their representations [MSC 2020]
22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020]
58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020]
Soggetto non controllato (g,K) cohomology
Automorphic forms
Branching law
Conformal geometry
Differential Forms
F-method
Gegenbauer polynomial
Gross-Prasad conjecture
Intertwining operator
Juhl operator
Lie groups
Lorentz group
Orthogonal group
Period
Reductive Groups
Restriction of representation
Symmetry breaking operator
Tempered representation
Unitary representations
Verma module
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0122792
Kobayashi, Toshiyuki  
Singapore, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh
Autore Kobayashi, Toshiyuki
Pubbl/distr/stampa Singapore, : Springer, 2018
Descrizione fisica XV, 342 p. ; 24 cm
Altri autori (Persone) Speh, Birgit
Soggetto topico 11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
22E30 - Analysis on real and complex Lie groups [MSC 2020]
22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020]
22E46 - Semisimple Lie groups and their representations [MSC 2020]
53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020]
58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020]
Soggetto non controllato (g,K) cohomology
Automorphic forms
Branching law
Conformal geometry
Differential Forms
F-method
Gegenbauer polynomial
Gross-Prasad conjecture
Intertwining operator
Juhl operator
Lie groups
Lorentz group
Orthogonal group
Period
Reductive Groups
Restriction of representation
Symmetry breaking operator
Tempered representation
Unitary representations
Verma module
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00122792
Kobayashi, Toshiyuki  
Singapore, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich
Autore Zhelnorovich, Vladimir A.
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xvi, 392 p. : ill. ; 24 cm
Soggetto topico 15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020]
83C60 - Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism [MSC 2020]
53C27 - Spin and Spin$^c$ geometry [MSC 2020]
15Axx - Basic linear algebra [MSC 2020]
81T11 - Higher spin theories [MSC 2020]
Soggetto non controllato Complex Euclidean spaces
Dirac matrices
Einstein-Dirac equations
Fermi-Walker transport
Gamma Matrices
Lorentz group
Maxwell's equations
Minkowski space
Nonlinear Heisenberg equations
Pseudo-Eucliedean spaces
Riemannian spaces
Semi spinors
Spin fluids
Spinor fields
Tensor fields
Tensor representation of spinors
Tetrad formalism
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0219211
Zhelnorovich, Vladimir A.  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich
Autore Zhelnorovich, Vladimir A.
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xvi, 392 p. : ill. ; 24 cm
Soggetto topico 15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
15Axx - Basic linear algebra [MSC 2020]
53C27 - Spin and Spin$^c$ geometry [MSC 2020]
81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020]
81T11 - Higher spin theories [MSC 2020]
83C60 - Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism [MSC 2020]
Soggetto non controllato Complex Euclidean spaces
Dirac matrices
Einstein-Dirac equations
Fermi-Walker transport
Gamma Matrices
Lorentz group
Maxwell's equations
Minkowski space
Nonlinear Heisenberg equations
Pseudo-Eucliedean spaces
Riemannian spaces
Semi spinors
Spin fluids
Spinor fields
Tensor fields
Tensor representation of spinors
Tetrad formalism
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00219211
Zhelnorovich, Vladimir A.  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui