Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2016 |
Descrizione fisica | IX, 192 p. ; 24 cm |
Altri autori (Persone) |
Kubo, Toshihisa
Pevzner, Michael |
Soggetto topico |
53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 53C10 - G-structures [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
Branching law
Conformal geometry Conformal holography Differential Forms F-method Fradkin-Tseytlin operator Gegenbauer polynomial Hodge operator Homogeneous space Hyperbolic space Hypergeometric function Lie groups Lorentz group Paneitz operator Reductive Groups Riemannian geometry Symmetry breaking operators Unitary representations Verma module Yamabe operator |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0107586 |
Kobayashi, Toshiyuki | ||
Singapore, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Conformal symmetry breaking operators for differential forms on spheres / Toshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2016 |
Descrizione fisica | IX, 192 p. ; 24 cm |
Altri autori (Persone) |
Kubo, Toshihisa
Pevzner, Michael |
Soggetto topico |
22E46 - Semisimple Lie groups and their representations [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020] 53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020] 53C10 - G-structures [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
Branching law
Conformal geometry Conformal holography Differential Forms F-method Fradkin-Tseytlin operator Gegenbauer polynomial Hodge operator Homogeneous space Hyperbolic space Hypergeometric function Lie groups Lorentz group Paneitz operator Reductive Groups Riemannian geometry Symmetry breaking operators Unitary representations Verma module Yamabe operator |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00107586 |
Kobayashi, Toshiyuki | ||
Singapore, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Reflection Positivity : A Representation Theoretic Perspective / Karl-Hermann Neeb, Gestur Ólafsson |
Autore | Neeb, Karl-Hermann |
Pubbl/distr/stampa | Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018 |
Descrizione fisica | viii, 139 p. : ill. ; 24 cm |
Altri autori (Persone) | Ólafsson, Gestur |
Soggetto topico |
42-XX - Harmonic analysis on Euclidean spaces [MSC 2020]
81-XX - Quantum theory [MSC 2020] 22-XX - Topological groups, Lie groups [MSC 2020] 43-XX - Abstract harmonic analysis [MSC 2020] 22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020] |
Soggetto non controllato |
Cartan dual group
Constructive Quantum Field Theory Euclidean group Hardy-Littlewood-Sobolev inequality Kubo-Martin-Schwinger condition Lattice Gauge Theory Lax-Phillips scattering theory Lorentz group Poincare group Reflection positive Hilbert space Representation Theory Riemannian geometry Stochastic processes Symmetric Lie groups Wick rotation |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124969 |
Neeb, Karl-Hermann | ||
Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Reflection Positivity : A Representation Theoretic Perspective / Karl-Hermann Neeb, Gestur Ólafsson |
Autore | Neeb, Karl-Hermann |
Pubbl/distr/stampa | Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018 |
Descrizione fisica | viii, 139 p. : ill. ; 24 cm |
Altri autori (Persone) | Ólafsson, Gestur |
Soggetto topico |
22-XX - Topological groups, Lie groups [MSC 2020]
22E47 - Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020] 42-XX - Harmonic analysis on Euclidean spaces [MSC 2020] 43-XX - Abstract harmonic analysis [MSC 2020] 81-XX - Quantum theory [MSC 2020] |
Soggetto non controllato |
Cartan dual group
Constructive Quantum Field Theory Euclidean group Hardy-Littlewood-Sobolev inequality Kubo-Martin-Schwinger condition Lattice Gauge Theory Lax-Phillips scattering theory Lorentz group Poincare group Reflection positive Hilbert space Representation Theory Riemannian geometry Stochastic processes Symmetric Lie groups Wick rotation |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124969 |
Neeb, Karl-Hermann | ||
Karl-Hermann Neeb, Gestur ÓlafssonCham, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2018 |
Descrizione fisica | XV, 342 p. ; 24 cm |
Altri autori (Persone) | Speh, Birgit |
Soggetto topico |
11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020] 22E30 - Analysis on real and complex Lie groups [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
(g,K) cohomology
Automorphic forms Branching law Conformal geometry Differential Forms F-method Gegenbauer polynomial Gross-Prasad conjecture Intertwining operator Juhl operator Lie groups Lorentz group Orthogonal group Period Reductive Groups Restriction of representation Symmetry breaking operator Tempered representation Unitary representations Verma module |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0122792 |
Kobayashi, Toshiyuki | ||
Singapore, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Symmetry breaking for representations of rank one orthogonal groups II / Toshiyuki Kobayashi, Birgit Speh |
Autore | Kobayashi, Toshiyuki |
Pubbl/distr/stampa | Singapore, : Springer, 2018 |
Descrizione fisica | XV, 342 p. ; 24 cm |
Altri autori (Persone) | Speh, Birgit |
Soggetto topico |
11F70 - Representation-theoretic methods; automorphic representations over local and global fields [MSC 2020]
22E30 - Analysis on real and complex Lie groups [MSC 2020] 22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 53A31 - Differential geometry of submanifolds of Möbius space [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
Soggetto non controllato |
(g,K) cohomology
Automorphic forms Branching law Conformal geometry Differential Forms F-method Gegenbauer polynomial Gross-Prasad conjecture Intertwining operator Juhl operator Lie groups Lorentz group Orthogonal group Period Reductive Groups Restriction of representation Symmetry breaking operator Tempered representation Unitary representations Verma module |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00122792 |
Kobayashi, Toshiyuki | ||
Singapore, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich |
Autore | Zhelnorovich, Vladimir A. |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xvi, 392 p. : ill. ; 24 cm |
Soggetto topico |
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020] 83C60 - Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 15Axx - Basic linear algebra [MSC 2020] 81T11 - Higher spin theories [MSC 2020] |
Soggetto non controllato |
Complex Euclidean spaces
Dirac matrices Einstein-Dirac equations Fermi-Walker transport Gamma Matrices Lorentz group Maxwell's equations Minkowski space Nonlinear Heisenberg equations Pseudo-Eucliedean spaces Riemannian spaces Semi spinors Spin fluids Spinor fields Tensor fields Tensor representation of spinors Tetrad formalism |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0219211 |
Zhelnorovich, Vladimir A. | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Theory of Spinors and Its Application in Physics / Vladimir A. Zhelnorovich |
Autore | Zhelnorovich, Vladimir A. |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xvi, 392 p. : ill. ; 24 cm |
Soggetto topico |
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
15Axx - Basic linear algebra [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 81R25 - Spinor and twistor methods applied to problems in quantum theory [MSC 2020] 81T11 - Higher spin theories [MSC 2020] 83C60 - Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism [MSC 2020] |
Soggetto non controllato |
Complex Euclidean spaces
Dirac matrices Einstein-Dirac equations Fermi-Walker transport Gamma Matrices Lorentz group Maxwell's equations Minkowski space Nonlinear Heisenberg equations Pseudo-Eucliedean spaces Riemannian spaces Semi spinors Spin fluids Spinor fields Tensor fields Tensor representation of spinors Tetrad formalism |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00219211 |
Zhelnorovich, Vladimir A. | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|