Entire Holomorphic Mappings in One and Several Complex Variables. (AM-85), Volume 85 / / Phillip A. Griffiths |
Autore | Griffiths Phillip A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (112 pages) : illustrations |
Disciplina | 515/.9 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Holomorphic mappings |
Soggetto non controllato |
Algebraic variety
Analytic function Analytic set Armand Borel Big O notation Canonical bundle Cartesian coordinate system Characteristic function (probability theory) Characterization (mathematics) Chern class Compact Riemann surface Compact space Complex analysis Complex manifold Complex projective space Corollary Counting Curvature Degeneracy (mathematics) Derivative Differential form Dimension Divisor Elementary proof Entire function Equation Exponential growth Gaussian curvature Hermann Weyl Hodge theory Holomorphic function Hyperplane Hypersurface Infinite product Integral geometry Invariant measure Inverse problem Jacobian matrix and determinant Kähler manifold Line bundle Linear equation Logarithmic derivative Manifold Meromorphic function Modular form Monograph Nevanlinna theory Nonlinear system Phillip Griffiths Picard theorem Polynomial Projective space Q.E.D. Quantity Ricci curvature Riemann sphere Scientific notation Several complex variables Special case Stokes' theorem Subset Summation Theorem Theory Uniformization theorem Unit square Volume form |
ISBN | 1-4008-8148-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INDEX OF NOTATIONS -- INTRODUCTION -- CHAPTER 1. ORDERS OF GROWTH -- CHAPTER 2. THE APPEARANCE OF CURVATURE -- CHAPTER 3. THE DEFECT RELATIONS -- BIBLIOGRAPHY -- Backmatter |
Record Nr. | UNINA-9910154753903321 |
Griffiths Phillip A. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Meromorphic Functions and Analytic Curves. (AM-12) / / Hermann Weyl |
Autore | Weyl Hermann |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (285 pages) : illustrations |
Disciplina | 517.5 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Functions |
Soggetto non controllato |
Algebraic curve
Algebraic equation Algebraic function Algebraic surface Analytic continuation Analytic function Arc (geometry) Argument principle Basis (linear algebra) Bernhard Riemann Betti number Big O notation Boundary value problem C-function C0 Characteristic function (probability theory) Circumference Coefficient Combination Compact Riemann surface Compact space Complex analysis Complex number Computation Concentric Conformal map Continuous function Coordinate system Degeneracy (mathematics) Derivative Diameter Differential form Dimension Disk (mathematics) Dual curve Entire function Equation Equidistant Euler characteristic Existential quantification Exponential function Exterior (topology) Floor and ceiling functions Fundamental theorem Gauge factor General position Geometry Harmonic function Heine–Borel theorem Hermann Weyl Homogeneous coordinates Improper integral Integer Interior (topology) Inverse function Limit superior and limit inferior Line integral Linear differential equation Linear map Local parameter Logarithm Logarithmic derivative Mathematics Maximum principle Meromorphic function Modular form Modular group Moduli (physics) Monodromy theorem Multiple integral Natural number Notation Order by Parallelepiped Parameter Polyad Polynomial Power series Prime number Probability Projection (mathematics) Quantity Rational function Real variable Rectangle Residue theorem Riemann integral Riemann surface Rotational symmetry Second derivative Simply connected space Subset Summation Theorem Theory Topological space Total order Unit circle Unit vector Variable (mathematics) |
ISBN | 1-4008-8228-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- INTRODUCTION. EARLY HISTORY AND BIBLIOGRAPHY -- CHAPTER I. GEOMETRIC AND FUNCTION-THEORETIC FOUNDATIONS -- CHAPTER II. FIRST MAIN THEOREM FOR MEROMORPHIC CURVES -- CHAPTER III. THE SECOND MAIN THEOREM FOR MEROMORPHIC CURVES -- CHAPTER IV. FIRST AND SECOND MAIN THEOREMS FOR ANALYTIC CURVES -- CHAPTER V. THE DEFECT RELATIONS -- Backmatter |
Record Nr. | UNINA-9910154746403321 |
Weyl Hermann | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Semiclassical soliton ensembles for the focusing nonlinear Schrodinger equation [[electronic resource] /] / Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller |
Autore | Kamvissis Spyridon |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, NJ, : Princeton University Press, c2003 |
Descrizione fisica | 1 online resource (280 p.) |
Disciplina | 530.12/4 |
Altri autori (Persone) |
McLaughlinK. T-R <1969-> (Kenneth T-R)
MillerPeter D <1967-> (Peter David) |
Collana | Annals of mathematics studies |
Soggetto topico |
Schrodinger equation
Wave mechanics |
Soggetto non controllato |
Abelian integral
Analytic continuation Analytic function Ansatz Approximation Asymptote Asymptotic analysis Asymptotic distribution Asymptotic expansion Banach algebra Basis (linear algebra) Boundary (topology) Boundary value problem Bounded operator Calculation Cauchy's integral formula Cauchy's integral theorem Cauchy's theorem (geometry) Cauchy–Riemann equations Change of variables Coefficient Complex plane Cramer's rule Degeneracy (mathematics) Derivative Diagram (category theory) Differentiable function Differential equation Differential operator Dirac equation Disjoint union Divisor Eigenfunction Eigenvalues and eigenvectors Elliptic integral Energy minimization Equation Euler's formula Euler–Lagrange equation Existential quantification Explicit formulae (L-function) Fourier transform Fredholm theory Function (mathematics) Gauge theory Heteroclinic orbit Hilbert transform Identity matrix Implicit function theorem Implicit function Infimum and supremum Initial value problem Integrable system Integral curve Integral equation Inverse problem Jacobian matrix and determinant Kerr effect Laurent series Limit point Line (geometry) Linear equation Linear space (geometry) Logarithmic derivative Lp space Minor (linear algebra) Monotonic function Neumann series Normalization property (abstract rewriting) Numerical integration Ordinary differential equation Orthogonal polynomials Parameter Parametrix Paraxial approximation Parity (mathematics) Partial derivative Partial differential equation Perturbation theory (quantum mechanics) Perturbation theory Pole (complex analysis) Polynomial Probability measure Quadratic differential Quadratic programming Radon–Nikodym theorem Reflection coefficient Riemann surface Simultaneous equations Sobolev space Soliton Special case Taylor series Theorem Theory Trace (linear algebra) Upper half-plane Variational method (quantum mechanics) Variational principle WKB approximation |
ISBN |
1-299-44345-1
1-4008-3718-9 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Figures and Tables -- Preface -- Chapter 1. Introduction and Overview -- Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons -- Chapter 3. Semiclassical Soliton Ensembles -- Chapter 4. Asymptotic Analysis of the Inverse Problem -- Chapter 5. Direct Construction of the Complex Phase -- Chapter 6. The Genus - Zero Ansatz -- Chapter 7. The Transition to Genus Two -- Chapter 8. Variational Theory of the Complex Phase -- Chapter 9. Conclusion and Outlook -- Appendix A. H¨older Theory of Local Riemann-Hilbert Problems -- Appendix B. Near-Identity Riemann-Hilbert Problems in L2 -- Bibliography -- Index |
Record Nr. | UNINA-9910791959003321 |
Kamvissis Spyridon | ||
Princeton, NJ, : Princeton University Press, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|